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Chapter 3

Formal Calculus: Richardson’s
Theorem

This chapter presents the following two chapters: the purpose of all these chapters
is to prove that simplification in formal calculus is not possible in the general case.

3.1 Richardson 68’s Theorem

3.1.1 The theorem

Theorem 3.1 (Richardson 68) • Let E be a set of expressions representing
real partial functions f : R→ R. Let E∗ be the set of functions represented
by expressions in E.

• Assume that E∗:

– contains identify, rational numbers as constant functions,

– is closeda under addition, subtraction, multiplication and composi-
tion.

– Assume that E∗ contains log(2), π, ex , sin(x).

• Then, given an expression A in E, determining whether there is some real
number x with A(x) < 0 is unsolvable.

aThere is an effective procedure for finding expressions in E to represent A(x)+B(x) from rep-
resentation of A(x) and B(x), and similarly for other operations.

(remark: the theorem is not stated here with minimal hypotheses. It is stated in
its original form. We will see in chapter 4 that for example constant π and log(2) can
be avoided, using Matiyasevich’s result, instead of Davis-Putnam-Robinson’s theo-
rem, as it was originally done by Richardson).

11



12 CHAPTER 3. FORMAL CALCULUS: RICHARDSON’S THEOREM

3.1.2 Proof Idea

A formal proof is given in next two chapters.
Basically,
Diophantine equations

• There is some polynomial P (y, x1, · · · , xn), with integral coefficients in y , x1, · · · , xn ,
2x1 , · · · ,2xn , for which the predicate

∃x1 · · ·xn ∈N s.t. P (y, x1, · · · , xn) = 0

is not recursive as y varies over the natural numbers.

can be embedded into R:

• Hence, the predicate

∃x1 · · ·xn ∈R s.t. P 2(y, x1, · · · , xn)+
n∑

t=1
sin2(πxi ) = 0

is not recursive as y varies over the natural numbers.

• Hence, the predicate

∃x1 · · ·xn ∈R s.t. K (y, x1, · · · , xn)∗ (P 2(y, x1, · · · , xn)+
n∑

t=1
sin2(πxi )) < 1

is not recursive as y varies over the natural numbers.

• Hence, the predicate

∃x1 · · ·xn ∈R s.t. K (y, x1, · · · , xn)∗ (P 2(y, x1, · · · , xn)+
n∑

t=1
sin2(πxi ))−1 < 0

is not recursive as y varies over the natural numbers.

3.1.3 Richardson 68’s Theorem (continued)

Theorem 3.2 (Richardson 68) • Let E be a set of expressions representing
real partial functions f : R→ R. Let E∗ be the set of functions represented
by expressions in E.

• Assume that E∗:

– contains identify, rational numbers as constant functions,

– is closeda under addition, subtraction, multiplication and composi-
tion.

– Assume that E∗ contains log(2), π, ex , sin(x).

• Then, given an expression A in E, determining whether there is some real
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number x with A(x) ≡ 0 is unsolvable.

aThere is an effective procedure for finding expressions in E to represent A(x)+B(x) from rep-
resentation of A(x) and B(x), and similarly for other operations.

3.1.4 Proof Idea

A formal proof will be given in two chapters.
Basically,
∃x G(n, x) < 1 iff |G(n, x)−1|− (G(n, x)−1) ≡ 0.

3.2 Consequences

From a Formal Calculs point of view:

• simplification is hard in the general case.

• computer algebra is about isolating classes for which algorithms exist.

3.3 Results in this spirit

• Determining whether a polynomial dynamical system has a Hopf bifurcation
is undecidable [da-Costa Doria 94].

• “Dynamical Systems where proving chaos is equivalent to proving Fermat’s
conjecture” [da-Costa Doria Amaral 92].
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Chapter 4

Richardson’s Theorem

We denote by Σk the set of functions of k variables, built from constant 1, addition,
subtraction, multiplication, and sinus. We note by Σ the union of the Σk .

We admit in this chapter the following result, proved in Chapter 5:

Theorem 4.1 There is no algorithm that can decide for a Diophantine equation
(that is to say an equation P (x1, · · · , xk ) = 0, for P a polynomial) whether or not
it has a solution in natural numbers.

4.1 From Integers to Reals

Lemma 4.1 Let a/b < c/d be two rational numbers. There exists some polyno-
mial with integer coefficients whose set of real roots, projected on the first coor-
dinate, is exactly interval [a/b,c/d ].

Proof: We start from equation x − y2 = 0 whose solution is the set of (x, y2) where y
is in R and x ≥ 0. By translation and change of sign, we consider (x − a/b − y2)2 +
(c/d −x − z2)2 then

(bx −a − y2)2 + (c −d x − z2)2 = 0

whose real roots (x, y, z) have their first coordinate in [a/b,c/d ]. �

Lemma 4.2 There is a function f ∈Σwhose only real root has π has first coordi-
nate.

Proof: Using the fact that π ∈ [3,22/7], previous Lemma, and the fact that a sum
of squares is null iff each term is null, combined with sin(x) = 0, we just need to
consider

f (x, y, z) = sin2(x)+ (x −3− y2)2 + (22−7x − z2)2 = 0.

�
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16 CHAPTER 4. RICHARDSON’S THEOREM

Proposition 4.1 There is no algorithm that takes as input a function f ∈ Σk for
an arbitrary k, and decides whether equation f (x1, · · · , xk ) = 0 has a solution
(over Rk ).

Proof: We reduces the problem of solving Diophantine equations to this prob-
lem. If P ∈Z[X1, . . . , Xk ], then the existence of integer solutions to P is equivalent to
the existence of real solutions to the equation in k +3 variables

Φ(x, y, z, x1, . . . , xk ) = sin2(x)+ (x −3− y2)2 + (22−7x − z2)2

+P (x1, . . . , xk )2 + sin2(x1x)+ sin2(x2x)+·· ·+ sin2(xk x) = 0.

�

4.2 From Equalities to Inequalities

Lemma 4.3 For all f ∈Σk , there exists a polynomial g ∈Z[X1, . . . , Xk ] such that

1. g (x1, . . . , xk ) > 1 for all (x1, . . . , xk ) ∈Rk ;

2. f (x1+δ1, . . . , xk +δk ) < g (x1, . . . , xk ) for all (x1, . . . , xk ) ∈Rk and all reals δi

with |δi | < 1, i = 1, . . . ,k.

We says in that case that f is dominated by g .

Proof: By induction on the construction of f . Constant 1 is dominated by 2,
each variable xi is dominated by xi + 2. Then, if f1 and f2 are dominated by g1

and g2, then f1− f2 and f1+ f2 are dominated by g1+g2, and f1 f2 by g1g2, whereas
sin f1 is dominated by 2. �

Proposition 4.2 There does not exist an algorithm that takes as input a function
f ∈Σk for some arbitrary k, and that decides if inequality f (x1, . . . , xk ) < 1 has a
real solution.

Proof: Starting from P ∈ Z[X1, . . . , Xk ], we consider previous function Φ. We
consider M 2Φ ≤ 1 with M still to be determined. If (x, y, z, y1, . . . , yk ) is a real solu-
tion to this inequality, one wants to see how M sufficiently large force the yi to be
integers.

First, we can control the approximation of π. Inequality M 2Φ≤ 1 implies

− 1

M
< x −3− y2 < 1

M
, − 1

M
< 22−7x − z2 < 1

M
, |sin(x)| < 1

M
.

From first two inequalities, we deduce first that x ∈ [3−1/M ,22/7+1/(7M)]. Then
we can link x −π to M by mean value theorem (Théorème des accroisssements
finis).

sin(x) = sin(x)− sin(π) = (x −π)cos(θ),
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with θ in the above interval, and hence taking M > 2, we get |x −π| < 2/M .
Then, we control the distance between yi and its integer part, that we will de-

note by xi . Inequality M 2Φ ≤ 1 implies |sin(yi x)| < 1/M , and so there exists some
multiple kiπ of π with ki ∈ Z such that |yi x − kiπ| < 1/M . But then, |yi − ki | <
|yi − yi x/π| + |yi x/π−ki | < (|yi | +1)/M , and hence by considering M as a polyno-
mial that dominates Xi +1, we deduce that ki = xi and a controlled distance.

We can hence control the polynomial P in the integer part of the solution of
M 2Φ≤ 1:

P (x1, . . . , xk ) ≤ |P (y1, . . . , yk )|+ |P (x1, . . . , xk )−P (y1, . . . , yk )|

< 1

M
+

k∑
i=1

∣∣∣∣ ∂P

∂xi

∣∣∣∣ |xi − yi | < 1

M

(
1+

k∑
i=1

∣∣∣∣ ∂P

∂xi

∣∣∣∣ |yi +1|
)

.

To conclude it remains to take a polynomial M that dominates the function between
parentheses. Then |P (x1, . . . , xk )| < 1 and since this polynomial has integer coeffi-
cients, it takes integer values at integer arguments, and hence must be 0 in x1, . . . , xk .
In other words, given P , determining a real root to M 2Φ≤ 1 is determining an inte-
ger solution to P , which is undecidable. �

4.3 From Multivariate to Univariate

Consider

e1(x) = x sin(x), h(x) = x sin(x3), ei+1(x) = ei (h(x)) (i > 0).

Lemma 4.4 For any (x1, x2) ∈R2 and any ε> 0, there exists a real y such that

h(y) = x2,
∣∣e1(y)−x1

∣∣< ε.

Proof: In any interval [2kπ−π/2,2kπ+π/2] with k ∈N function sin takes values
in all [−1,1]. Function e1 is continuous and takes values in all [−2kπ,2kπ]. Hence,
for all k such that 2kπ> |x1|, this interval contains some yk with e1(yk ) = x1. More-
over, still by continuity, there exists ηk with |x− yk | < ηk implies |e1(x)−x1| < ε. The
derivative of e1 can be bounded by |e ′1(x)| = |x cos(x)+ sin(x)| < (2k + 1)π, so that
ηk = ε/((2k +1)π) is sufficient. In the same interval, function x3 has an amplitude
bigger than 2π for k sufficiently large:

(yk +ηk )3 − (yk −ηk )3 = 6y2
kηk +2η3

k > 6y2
kηk ≥ 6(2k −1/2)2π2ε

(2k +1)π
.
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Hence, for k sufficiently large, function h takes values in all interval [−2kπ+
π/2,2kπ−π/2]. Increasing k if necessary, x2 belongs to this intervals. This con-
cludes. �

Lemma 4.5 For all (x1, . . . , xk ) ∈ Rk and for all ε > 0, there exists some real y
such that

h(y) = xk , |ei (y)−xi | < ε (1 ≤ i < k).

Proof: For k = 2, the result is previous lemma. If the property holds for k, there exists
y? such that

h(y?) = xk+1, |ei (y?)−xi+1| < ε (1 ≤ i < k).

By previous lemma, there exists y such that y? = h(y) and |e1(y)− x1| < ε. This
proves the property for k +1, by the definition of functions ei . �

Theorem 4.2 There does not exist an algorithm that takes as input a function of
one variable f (x) ∈ Σ1, and that decides if there is a real solution to inequality
f (x) < 0.

Solution 4.1 We start from inequality M 2(x1, . . . , xk )Φ(x, y, z, x1, . . . , xk ) < 1 as above,
where we replace (x1, . . . , xk , x, y, z) by expressions e1(y), . . . ,ek+3(y) from previous
Lemma. This gives an inequality of the form Ψ(y)−1 < 0 with Ψ−1 ∈ Σ1. By con-
tinuity, this inequality has a real solution iff the inequality of previous Lemma. This
concludes.

Theorem 4.3 There does not exist an algorithm that takes as input a function of
one variable f (x) ∈Σ1, and that decides if there exists a real solution to equation
f (x) = 0.

Proof: If polynomial P has a integer root, then function Ψ of previous theo-
rem takes positive values arbitrarily close to 0. It takes also arbitrarily large values
(consider for example z to be very large). By continuity, there exists a solution to
equation 2Ψ(y)−1 = 0 iff P has integer solutions. �

4.4 Application to Simplification

Theorem 4.4 There does not exist an algorithm that takes as input a function of
one variable f (x) built from constant 1, addition, subtraction, multiplication,
sinus, and absolute value and that decides if this function is equal to the null
function.

Absolute value can be replaced by square root.

Proof: Deciding if there exists x ∈Rwith f (x) < 0 is equivalent to decide if func-
tion | f (x)|− f (x) is null over all R. The second part follows from identity |x| =

p
x2.

�



Chapter 5

Diophantine Equations

The purpose of this chapter is to prove Davis-Putnam-Robinson’s theorem, and then
use Matiyasevich’s theorem to prove that any recursively enumerable set is Diophan-
tine.

This chapter is based on [Jones, 1997].

5.1 Preliminaries

A function f :Nn →N is said exponential polynomial if it can be written f (x1, . . . , xn) =
t , where t is either xi , or N , or t1 ∗ t2, or t1 + t2, or t1 − t2, or t1

t2 , where 1 ≤ i ≤ n,
N ∈N, and where t1 and t2 are in turn exponential polynomial functions of x1, . . . , xn .

A exponential polynomial function that can be built without the case t1
t2 corre-

sponds to a polynomial function.
For example:

• f (x, y, z) = 3x+5y−71z5 is a polynomial function, where of course z5 is z∗z∗
z ∗ z ∗ z, and 3x is x +x +x.

• f (p, q,r,n) = (p +1)n+3 + (q +1)n+3 − (r +1)n+3 is exponential polynomial.

A set A ⊂Nn is said exponential Diophantine (respectively: Diophantine) if there
exists some integer m and a exponential polynomial function (respectively: polyno-
mial) f :Nn+m →N such that

(a1, . . . , an) ∈ A if an only if ∃x1 ∈N, . . . ,∃xm ∈N f (a1, . . . , an , x1, . . . , xm) = 0.

For example:

• The set of integers x such that there exist y, z with 3x +5y −71z5 = 0 is Dio-
phantine.

• The set {x, y, z|∃k ∈N xk + yk = zk } is exponential Diophantine.

• For a given (fixed) k, the set {x, y, z|xk + yk = zk } is Diophantine.
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5.2 Encoding of finite sequences

We will need to encode finite sequences of integers into integers. There are sev-
eral such techniques available. The best known, first employed by Gödel, uses the
Chinese Remainder theorem. In the present setting this technique has the disad-
vantage tat it makes it rather hard to express certain necessary operations as expo-
nential Diophantine equations. Therefore, we will use another technique invented
by Matiyasevich.

We will use the following trick: a sequence a0, a1, . . . , an ∈ {0,1}n+1 can be en-
coded by integer

∑n
i=0 ai 2i .

We will use the following result:

Lemma 5.1 The set of (k,n,m) such that m = (n
k

) = n!
(n−k)!k ! (we fix

(n
k

) = 0 for

k > n) is a subset ofN3 that is exponential Diophantine.

Proof: First, the less-than relation is exponential Diophantine, since

a < b ⇔∃x a +x +1 = b.

Second, let [N ]B
k te the kth digit of N written in base B . The relation d = [N ]B

k is
exponential Diophantine since

d = [N ]B
k ⇔∃c,e N = cB k+1 +dB k +e ∧d < B ∧e < B k .

By the binomial theorem

(B +1)n =
n∑

k=0

(
n

k

)
B k .

It follows that
(n

k

)
is the kth digit of (B+1)n written in base B , provided

(n
k

)< B for
all k. This in turn, holds if B > 2n (left as an exercice). Hence, m = (n

k

)
is exponential

Diophantine:

m =
(

n

k

)
⇔∃B B = 2n +1∧m = [(B +1)n]B

k .

�
Let a0, a1, . . . , an ∈ {0,1}n+1 and b0,b1, . . . ,bn ∈ {0,1}n+1 two sequences of n + 1

bits. we consider the encoding a and b of these sequences: we write a ¿ b for ∀0 ≤
i ≤ n, ai ≤ bi .

We will admit the following result:

Lemma 5.2 a ¿ b if and only if
(b

a

)= b!
(b−a)!a! is odd.
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Lemma 5.3 The relation a ¿ b (seen as a subset ofN2) is exponential Diophan-
tine.

Proof: We know that m = (n
k

)
is exponential Diophantine by Lemma 5.1. We have

m odd if and only if ∃x m = 2x +1, hence the result follows after substitution. �

5.3 Davis-Putnam-Robinson’s theorem

This section is devoted to prove the following result:

Theorem 5.1 Any recursively enumerable set A ⊂ Nn is exponential Diophan-
tine.

The idea of the proof is to prove that one can express the execution of a two coun-
ters machine with a system of exponential Diophantine equations. Then a system of
exponential Diophantine equations is equivalent to a unique exponential Diophan-
tine equation by considering the sum of the square of the equations.

Recall what a two counters machine is: such a machine has two counters x1

and x2. Initially, x2 = 0 and x1 ∈N is the input x. Such a machine has a finite number
n of instructions. For each i ∈ {1, . . . ,n}, instruction i is of the following possible
form:

1. Incr(c) that increments xc ;

2. Decr(c) that decrements xc if it is non-null;

3. IsZero(c, j ) tests if xc is null, go to instruction j if this is true;

4. Halt that halts the program.

It is well known that two counters machines can simulate Turing’s machines.
We can even suppose that

1. a two counters machine always halt with all its counter null

• (if not, one can consider another machine that simulate it, but decre-
ments its counters until there are 0 when it detects that the simulated
machine halts, and then halts).

2. a null counter is never decremented: every time an instruction of typeDecr(c, j )
is executed, counter xc has a value ≥ 1.

• (indeed, we can always replace each instruction Decr(c, j ) by two in-
structions:

(a) an instruction that tests whether counter xc is null, and if this is true,
sends to instruction j ,

(b) then instruction Decr(c, j )).

In other words, we get:
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Proposition 5.1 Any recursively enumerable set correspond to the set of integers
on which a two counters machine with properties 1. and 2. above halts.

To prove Davis-Putnam-Robinson’s theorem, we will encode the execution of a
two counters machine as a matrix of integers:

Take an example: The machine with the following program.

1. IsZero(1,4)

2. Decr(1)

3. IsZero(2,1)

4. Halt

The whole execution of the machine on x1 = 2, x2 = 0 can be described by the
following matrix whose:

• columns correspond to time t (increasing t corresponds to increasing number
of column, numbering columns going from right to left);

• and first two rows to values of counters x1, x2;

• and since the above program contains 4 instructions (1., 2., 3. et 4.), the fol-
lowing 4 rows are build with 0 and 1, with a 1 if and only if the corresponding
instruction is executed.

7 6 5 4 3 2 1 0 = t
0 0 0 1 1 1 2 2 =x1,t

0 0 0 0 0 0 0 0 =x2,t

0 1 0 0 1 0 0 1 = i1,t

0 0 0 1 0 0 1 0 = i2,t

0 0 1 0 0 1 0 0 = i3,t

1 0 0 0 0 0 0 0 = i4,t

Even more precisely: the first two rows represent the value of the counters at
time t , when considering that the first step is at time t = 0. For example, x1 has value
2 before step 0 and 1 (that is to say, x1,t = 2 for t = 0 and t = 1). It then has value 1
before step 2 and 3. Etc. The raw i determine which instruction is executed at time
t . For example, at time 0, the instruction 1. (that is to say IsZero(1,4,2)) is executed,
and hence i1,0 values 1, and in step 2, instruction 3. (that is to say IsZero(2,1,4)) is
executed, and hence i3,2 = 1.

Given a two counters machine with n instructions, the purpose is now to build
well-chosen exponential polynomial equations that check whether a matrix with n+
2 raws represents an execution of the machine.

To do so, we will represent such a matrix by n+2 integers x1, x2, i1, i2, . . . , in . These
n +2 integers will be a solution of the equations if and only if the matrix represents
an execution of the machine.
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Each of these n +2 integers encode a raw of the matrix. For example, the raw of
counter x1, that is to say raw (x1,t )t , will be encoded by integer

x1 =
y∑

t=0
x1,t bt ,

where b is an integer greater than all numbers in the matrix, and y = 7 is the com-
putation time.

Doing so for each raw, the previous matrix becomes

0∗b7+0∗b6+0∗b5+1∗b4+1∗b3+1∗b2+2∗b+2 =x1

0∗b7+0∗b6+0∗b5+0∗b4+0∗b3+0∗b2+0∗b+0 =x2

0∗b7+1∗b6+0∗b5+0∗b4+1∗b3+0∗b2+0∗b+1 = i1

0∗b7+0∗b6+0∗b5+1∗b4+0∗b3+0∗b2+1∗b+0 = i2

0∗b7+0∗b6+1∗b5+0∗b4+0∗b3+1∗b2+0∗b+0 = i3

1∗b7+0∗b6+0∗b5+0∗b4+0∗b3+0∗b2+0∗b+0 = i4

Doing so, all the matrix can be represented by 6 integers, the integers x1, x2, i1, i2, i3, i4.
In the general case, if we have 2 counters and n instructions, we need x1, x2, et i1, i2,
. . . , in , that is to say n +2 integers.

For a given machine, we will now produce some exponential Diophantine equa-
tions on the variables x (the input), y (the number of steps), x1, x2, i1, i2, · · · , in and
b, whose solutions represent the execution of the machine on input x.

First, we choose a basis b sufficiently large: we set the exponential Diophantine
equation

b = 2x+y+n , (5.1)

using the fact that in time y no counter can reach a value greater than x + y . Taking
such a b guarantees also two useful properties: b is a power of 2, and b > n.

We need some integer U whose radix b representation is a list of 1 of length y :
one just need to write equation

1+bU =U +by : (5.2)

indeed, the number by−1+by−2+·· ·+b+1 satisfies this equation, and this is the only
integers to do so.

We will then express many facts using formulas built from the integers xi and
integers i j , x, y , b, U and relation ¿.

Let 1 ≤ l ≤ n. We write
il ¿U : (5.3)

this imply that all the coefficients of il are only 0 and 1’s.
We can express the fact that at any time, at most one instruction is executed: one

just need to add equation

U =
n∑

i=1
il : (5.4)

this equation implies that there is exactly one 1 on each column of the il (no carry
can happen in the sum since b > n).
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We require all the coefficients to be strictly less than b/2: we add

x j ¿ (b/2−1)U , (5.5)

for j = 1,2.
By adding equation

1 ¿ i1, (5.6)

we guarantee that the first instruction is instruction number 1. By adding equation

in = by−1, (5.7)

that the last executed instruction is instruction number n (we can suppose without
loss of generality that this is the only one containing instruction Halt).

We can also express that after an instruction of type Incr(c) at line l , then instruc-
tion at line l +1 is executed: one just need to write

bil ¿ il+1 (5.8)

for each instruction of number l of type Incr(c): observe how one use the fact that a
multiplication by b correspond to a shift to the left.

We can do in a same way for each instruction of type Decr(c):
By adding

bil ¿ i j + il+1, (5.9)

we express the fact that instruction l of type IsZero(c, j ) is followed either by instruc-
tion j or instruction l +1.

We can then write:

x1 = x +b(x1 +
∑

l∈A(1)
il −

∑
l∈S(1)

il ) (5.10)

and

x2 = b(x j +
∑

l∈A(2)
il −

∑
l∈S(2)

il ), (5.11)

where A( j )is the list of the instructions that increment x j , and S( j ) the list of in-
structions that decrement x j : this implies that the counters are updated in a correct
way.

It only remains to express that each instruction l of type IsZero(c, j ) goes to in-
struction j if xc = 0, and to instruction l +1 otherwise.

This can be expressed by

bil ¿ il+1 +U −2xc , (5.12)

for each such instruction l .
This is based on the following observation.
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• Consider that xc = 0 before and, hence also after, step t , i.e. that

xc = ·· ·+0∗bt+1 +0∗bt + . . . .

Then
2xc = ·· ·+0∗bt+1 +0∗bt + . . . .

(we use here the fact that all coefficients are less than b/2, and hence no coef-
ficient of bt−1 is shifted in the coefficient of bt by the multiplication by 2).

In that case,
U −2xc = ·· ·+1∗bt+1 + . . . .

I.e.: the coefficient at bt+1 of U −2xc is odd.

• Consider that xc = v > 0 before, and hence also after, step t , then

xc = ·· ·+ v ∗bt+1 + v ∗bt + . . . .

Then
2xc = ·· ·+2v ∗bt+1 +2v ∗bt + . . . .

(we use here again the fact that all coefficients are less than b/2, and hence
that no coefficient is shifted).

In that case,
U −2xc = ·· ·+ (b −2v)∗bt+1 + . . . .

I.e: the coefficient at bt+1 of U −2xc is even.

We have
bil = ·· ·+1∗bt+1 + . . . .

This means, that Equation (5.12) to hold, we must have that coefficient at bt+1 at
il+1 is 0 whenever U −2xc is odd, and 1 whenever U −2xc is even (because 1 ¿ 0+0
is wrong, and 1 ¿ 1+1 is wrong).

That is to say, next instruction is instruction number l +1 iff xc = v > 0.
We then obtain the proof of Davis-Putnam-Robinson’s theorem: Any recursively

enumerable subset A ⊂Nn is exponential Diophantine.
Indeed, let A ⊂ Nn be a recursively enumerable set. It corresponds to the set of

n-tuples on which a two counters machine halts. By all previous considerations,
there exists a system of exponential Diophantine equations such that the n-tuples
on which the machine halts are exactly the solutions of the system.

Write f1(x1, . . . , xn) = 0, f2(x1, . . . , xn) = 0, . . . , fk (x1, . . . , xn) = 0 this system of
equations. We can then consider

f (x1, . . . , xn) = f1(x1, . . . , xn)2 +·· ·+ fk (x1, . . . , xn)2.

Then, using that a sum of square is null iff each term is null, f (x1, . . . , xn) = 0 is a
unique equation whose solutions are the solutions of the system: its solutions are
exactly the n-tuples on which the machine halts.
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5.4 Matiyasevich’s theorem

We will admit the following result, due to Matiyasevich:

Theorem 5.2 (Matiyasevich) The set of integers u, v, w such that u = v w is Dio-
phantine.

We get:

Corollary 5.1 Any recursively enumerable set is Diophantine.

Proof: By Davis-Putnam-Robinson’s theorem, any recursively enumerable set
A ⊂Nn is exponential Diophantine: one can build f (x, z1, . . . , zn) = 0 such that x ∈ A
iff ∃z1, . . . ,∃zn f (x, z1, . . . , zn) = 0.

By Matiyasevich’s theorem, there is a Diophantine equation

e(u, v, w, y1, . . . , ym) = 0

such that u = v w iff ∃y1, . . . ,∃ym e(x, y1, . . . , yn) = 0.
Replace any occurrence in f (x, z1, . . . , zn) of t t2

1 by a new variable u. Add to origi-
nal equation f (x, z1, . . . , zn) = 0 the equations v = t1, w = t2 and e(u, t1, t2, y1, . . . , ym) =
0. All these equations can be combined into a unique diophantine equation by con-
sidering that the sum of the square of the equations must be 0. �

5.5 On the impossibility of solving Diophantine equa-
tions

Corollary 5.2 There is no algorithm that can decide for a Diophantine equation
whether or not it has a solution in natural numbers.

Proof: Let A ⊂N be a recursively enumerable, non-recursive set. By above the-
orem, there exists an Diophantine equation f (x, z1, · · · , zn) = 0 such that x ∈ A iff
f (x, z1, · · · , zn) = 0 has a solution. Since we can construct effectively the equation
f (x, z1, · · · , zn) = 0 given x, it follows that an algorithm to decide for each x whether
f (x, z1, · · · , zn) = 0 has a solution would imply a decision procedure for A, which is
impossible since A is non-recursive. �



Chapter 6

Basics about dynamical systems

Let’s consider that we are working in Rn (in general, we could consider any vector
space with a norm). Let us consider f : E →Rn , where E ⊂Rn is open.

6.1 Ordinary Differential Equations

An Ordinary Differential Equation (ODE) is given by y ′ = f (y) and its solution is a
differentiable function y : I ⊂R→ E that satisfies the equation.

For any x ∈ E , the fundamental existence-uniqueness theorem (see e.g. [Hirsch et al., 2003])
for differential equations states that if f is Lipschitz on E , i.e. if there exists K such
that || f (y1)− f (y2)|| < k||y1 − y2|| for all y1, y2 ∈ E , then the solution of

y ′ = f (y), y(t0) = x (6.1)

exists and is unique on a certain maximal interval of existence I ⊂ R. In the termi-
nology of dynamical systems, y(t ) is referred to as the trajectory, Rn as the phase
space, and the function φ(t , x), which gives the position y(t ) of the solution at time
t with initial condition x, as the flow. The graph of y in Rn is called the orbit.

In particular, if f is continuously differentiable on E then the existence-uniqueness
condition is fulfilled [Hirsch et al., 2003]. Most of the mathematical theory has been
developed in this case, but can be extended to weaker conditions. In particular, if f
is assumed to be only continuous, then uniqueness is lost, but existence is guaran-
teed: see for example[Coddington and Levinson, 1972]. If f is allowed to be discon-
tinuous, then the definition of solution needs to be refined. This is explored by Filip-
pov in [Filippov, 1988]. Some hybrid system models use distinct and ad hoc notions
of solutions. For example, a solution of a piecewise constant differential equation
in [Asarin et al., 1995] is a continuous function whose right derivative satisfies the
equation.
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6.2 Dynamical Systems

In general, a dynamical system can be defined as the action of a subgroup T of R
on a space X , i.e. by a function (a flow) φ : T × X → X satisfying the following two
equations

φ(0, x) = x (6.2)

φ(t ,φ(s, x)) =φ(t + s, x). (6.3)

It is well known that subgroups T of R are either dense in R or isomorphic to the
integers. In the first case, the time is called continuous, in the latter case, discrete.

6.2.1 Continuous Time Dynamical Systems

Since flows obtained by initial value problems (IVP) of the form (6.1) satisfy equa-
tions (6.2) and (6.3), they correspond to specific continuous time and space dynam-
ical systems. Although not all continuous time and space dynamical systems can be
put in a form of a differential equation, IVPs of the form (6.1) are sufficiently general
to cover a very wide class of such systems. In particular, if φ is continuously differ-

entiable, then y ′ = f (y), with f (y) = d
d t φ(t , y)

∣∣∣
t=0

, describes the dynamical system.

6.2.2 Discrete Time Dynamical Systems

For discrete time systems, we can assume without loss of generality that T is the
integers. The analog of of Initial Value Problem (6.1) for discrete time systems is a
recurrence equation of type

yt+1 = f (yt ), y0 = x. (6.4)



Chapter 7

Dynamic Undecidability
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Chapter 8

Static vs Dynamic
Undecidability

The previous results are static undecidability results. They don’t really say things
about the hardness of

• simulating dynamical systems;

• verifying dynamical systems.

8.1 A provocative point of view

As observed in [Asarin, 1995] and in [Ruohonen, 1997], it is relatively simple but not
very informative to get undecidability results with continuous time dynamical sys-
tems, if f encodes a undecidable problem.

To illustrate this, we consider the following example taken from [Ruohonen, 1997].
In this paper, Ruohonen discusses the event detection problem: given a differential
equation y ′ = f (t , y), with initial value y(0), decide if a given condition g j (t , y(t ), y ′(t )) =
0, j = 1, · · · ,k happens at some time t in a given interval I .

Given the Turing machine M , the sequence f0, f1, · · · of rationals defined by

fn =
{

2−m if M stops in m steps on input n
0 if M does not stop on input n

is not a computable sequence of rationals, but is a computable sequence of reals.
Now, the detection of the event y(t ) = 0 for the ordinary differential equation y ′ =

0, given n, and the initial value y(0) = fn , is undecidable over any interval containing
0, because fn = 0 is undecidable.

A further modification can be obtained as follows [Ruohonen, 1997].
Consider the smooth function

g (x) = fbx+1/2ce− tan2πx ,
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which is computable on [0,∞). The detection of the event y1(t ) = 0 for the ODE{
y ′

1 = g (y2)−1
y ′

2 = 0

given an initial value y1(0) = 1, y2(0) = n, where n is a nonnegative integer is then
undecidable on [0,1].

As put forth in [Asarin, 1995] undecidability results given by recursive analysis
are somehow built similarly.

8.2 Dynamic undecidability

To be able to discuss in more detail computability of differential equations, we will
focus on dynamical systems that encode the transitions of a Turing machine instead
of the result of the whole computation simulation1. Typically, we start with some
(simple) computable injective function which encodes any configuration of a Turing
machine M as a point in Rn . Let x be the encoding of the initial configuration of M .
Then, we look for a function f : E ⊂Rn+1 →Rn such that

• Discrete Time Case: the solution of y t+1 = f (y, t ) with y(0) = x, is such that xt

is the encoding of the configuration of M after t steps.

• Continuous time Case: the solution of y ′(t ) = f (y, t ), with y(0) = x, at time
T ∈ N is the encoding of the configuration of M after T steps.

We will see, in the remainder of this section, that f can be restricted to have low
dimension, to be smooth or even analytic, or to be defined on a compact domain.

Instead of stating that the property above is a Turing machine simulation, we
can address it as a reachability result. Given the IVP defined by f and x, and any
region A ⊂ Rn , we are interested in deciding if there is a t ≥ 0 such y(t ) ∈ A, i.e., if
the flow starting in x crosses A. It is clear that if f simulates a Turing machine in
the previous sense, then reachability for that system is undecidable (just consider
A as encoding the halting configurations of M ). So, reachability is another way to
address the computability of ODEs and a negative result is often a byproduct of the
simulation of Turing machines. Similarly, undecidability of event detection follows
from Turing simulation results.

1This is called dynamic undecidability in [Ruohonen, 1993].



Chapter 9

Some Dynamic Undecidability
Results: Using a Discrete Time

9.1 Some models

9.1.1 The PAM Model

Here is a simple toy model.

Definition 9.1 (PAM [Asarin and Maler, 1998]) A Piecewise Affine Map (PAM)
is a discrete time dynamical system H , defined by xt+1 = f (xt ) on X ⊂Rd , where
f : X →Rd is piecewise affine: that is to say,

f (x) = fi (x) for x ∈ Pi , i = 1, . . . ,n

where fi is some affine function with rational coefficients, and the Pi constitutes
a partition of X into finitely many rational convex polyhedra.

Recall that a convex polyhedra is the convex hull of a finite number of points. A
rational convex polyhedra is the convex hull of a finite number of points with ratio-
nal coordinates.
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9.1.2 The PCD Model

We are going to discuss the Piecewise Constant Derivative (PCD) model that has
been introduced by Eugene Asarin, Oded Maler and Amir Pnueli in [Asarin et al., 1995],
as a simple model for hybrid systems. It has later on been discussed in several pa-
pers such as [Asarin and Bouajjani, 2001, Asarin and Maler, 1998, Bournez, 1999].

A hybrid system is a system that combines continuous evolutions with discrete
transitions. Such models appear as soon as one tries to model some systems where a
discrete system, such as a computer, evolves in a continuous environment: See e.g.
[Antsaklis, 2000].

From a theoretical computer science point of view, one interest of the hybrid
systems models, is that they generalize both discrete time transition systems and
continuous time dynamical systems.

Definition 9.2 (PCD System [Asarin and Maler, 1998]) A (rational) piecewise-
constant derivative (PCD) system is a continuous time dynamical system H ,
defined by differential equation ẋ = f (x) on X ⊂ Rd , where f : X → Rd , can be
represented by the formula

f (x) = ci for x ∈ Pi , i = 1, . . . ,n

where ci ∈Qd , and the Pi constitutes a finitely many partition of X into rational
convex polyhedra.

A trajectory of H starting from some x0 ∈ X , is a solution of the differential equa-
tion ẋ = f (x) with initial condition x(0) = x0: that is a continuous functionφ :R+ → X
such that φ(0) = x0, and for every t , f (φ(t )) is equal to the right derivative of φ(t ).

In other words, a PCD system consists of partitioning the space into convex
polyhedral sets (“regions”), and assigning a constant derivative c (“slope”) to all the
points sharing the same region. The trajectories of such systems are broken lines,
with the breakpoints occurring on the boundaries of the regions [Asarin et al., 1995]:
see the following figure.
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Here is an example of a trajectory of a PCD system:

(1,−1)

(−1,−1) (−1,1/2)

(1,1)

(x,0)(−x/2,0) (x/2,0)

9.2 The most fundamental model: Turing Machines

Turing machines can also be considered as particular discrete time dynamical sys-
tems.

A Turing machine is indeed a discrete time dynamical system (Γ,`), where

• Γ=Q×Σ∗×Z corresponds to configurations (a configuration (q, w, z) is given
by some internal state q ∈ Q of the machine, some position z ∈ Z of the head
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of the machine, and the content w ∈ Σ∗, that can be seen as a word over the
alphabet Σ of the machine, of the tape).

• ` is the “next configuration relation”: it relates a configuration to its direct
successor (when the machine is deterministic, or to its direct successors when
the machine is non-deterministic).

9.3 Some Facts

9.3.1 A Key Decision Problem

The reachability problem is the following decision problem.

• Given

1. a system H = (X , f ),

2. some A ⊂ X ,

3. some B ⊂ X ,

• determine whether there is a trajectory starting from A (x(0) ∈ A) that reaches
B (x(t ) ∈ B for some t ).

9.3.2 Some Undecidability Results

• For all 4 models,

– Reachability is undecidable;

– Reachability is recursively enumerable;

– Reachability is Σ0
1-complete: any r.e. set can be reduced to reachability

of a system S.

9.4 Proof method

The idea is to simulate 2-counters (Minsky) machines, or Turing machines.

9.4.1 The involved notion of simulation

Consider some machine M : M can be a Turing machine, a pushdown automaton, or
a counter machine. M corresponds to a particular discrete time dynamical system
(Γ,`).
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By a discrete time dynamical system

A PAM simulates M if there is a piecewise affine function f : I → I , where I ⊂ Rd ,
and a f -stable D ⊂ I and a bijective function φ : Γ→ D such that

`=φ−1 ◦ f ◦φ.

Intuitively, this means that in order to apply T , one can encode the configuration
with φ, apply f , and then decode the result with φ−1.

By a continuous time dynamical system

To a continuous time dynamical system (X , f ), one can associate its stroboscopic
map: this is the discrete time dynamical system (X , g ), where g (x) is the solution at
time 1 of x ′ = f (x) with x(0)) = x. That is to say, what is obtained by considering the
system at discrete time.

We can say that a continuous time dynamical system simulates M if its strobo-
scopic map simulates M .

9.4.2 Counter machines

We recall that a k-counter machine has k counters: a counter C takes values in N
with operations C ++ (incrementation), C −− (decrementation), test C > 0.

A program is then made of these very basic instructions.
For example,

q1: D ++; goto q2

q2: C −−; goto q3

q3: if C > 0 then goto q2 else goto q1

is a program.
Recall that reachability is undecidable (and Σ0

1-complete) for 2-counters (Min-
sky) machines.

The idea to simulate a counter is to represent the fact that C = n in the counter
machine by the fact that some variable x is such that x = 2−n .

Basically, this can be represented graphically by:

One then uses the following correspondance:
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Counter PAM

State SpaceN State Space [0,1]
State C = n State x = 2−n

C ++ x := x/2
C −− x := 2x
C > 0? x < 0.75?

To represent a Minsky machine, one then encodes the two counters, and its
states into two reals using the following idea:

Minsky Machine PAM

State Space State Space
{q1, q2, · · · , qk }×N×N [1,k +1]× [0,1]

State (qi ,m,n) State x = i +2−m , y = 2−n

If one prefers, the functionφof subsection 9.4.1 is the function that maps (q,n1,n2) ∈
Q ×N×N to (q +2−n1 ,2−n2 ).

On the previous example, one just need to consider the following PAM (the value
of the piecewise affine function can be defined in any arbitrary way outside the
above sets/definition).

Minsky Machine PAM

State Space {q1, · · · , qk }×N×N State Space [1,k +1]× [0,1]
State (qi ,m,n) x = i +2−m , y = 2−n

q1: D ++; goto q2

{
x := x +1
y := y/2

if 1 < x ≤ 2

q2: C −−; goto q3

{
x := 2(x −2)+3
y := y

if 2 < x ≤ 3

q3: if C > 0 then goto q2 else q1

{
x := x −1
y := y

if 3 < x < 4{
x := x −2
y := y

if x = 4

9.4.3 From Minsky to Turing Machines

This is even possible to do a real time simulation of a 2-stacks (that is to say a Turing)
machines.
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A stack S = s1s2 · · · over alphabet {0,1,2, · · · ,k−1}, where si is the top of the stack,
can be encoded in several ways:

1. Idea 1:

by

r (S) =
∞∑

i=1

si

k i

2. Improved idea 1′:

r (S) =
∞∑

i=1

2si +1

(2k)i

For both encoding, stack operations have then arithmetic counterparts:
For the coding corresponding to Idea 1:

S′ = PU SH(v,S) if r (S′) = (r (s)+ v)/k

(S′, v) = POP (S) if r (S′) = kr (S)− v

As a Turing machine can be considered as a 2-stacks machine: We can encode
easily a Turing machine using a PAM (R2, f ).

The interest of “Improved Idea 1′” is that it allows to state that we can even as-
sume the piecewise affine map f to be

1. a continuous function.

2. and one can even consider domain [0,1]2, instead of R2.

Theorem 9.1 (Theorem 3.1 of [Koiran et al., 1994]) An arbitrary Turing machine
can be simulated in linear time by a continuous piecewise linear function f :
[0,1]2 → [0,1]2.

Proof: Any Turing machine can be considered as a particular 2-stacks automa-
ton, i.e. as a discrete time dynamical system M = (Q ×Σ∗ ×Σ∗,`): (q,γ1,γ2) cor-
responds to internal state q , and to stacks γ1 and γ2 seen as words over the alpha-
bet Σ. In order to simplify the description, we suppose wlog in what follows that
Q = {1,3}p1 × {1,3}p2 (you can assume p2 = 0 but this form is more symmetric) and
that Σ= {1,3}.

Each configuration (q,γ1,γ2) of M is encoded in the radix-4 expansion of a point
(x1, x2) of [0,1]2 as follows: if q = (q1,1, q1,2, . . . , q1,p1 , q2,1, q2,2, . . . , q2,p2 ) ∈Q = {1,3}p1×
{1,3}p2 and γi = si ,1, si ,2, . . . , si ,n , . . . , then

xi =
pi∑

j=1

qi , j

4 j
+

∞∑
j=1

si , j

4pi+ j

We will denote abc the real number with radix-4 expansion abc.
Let I1,l1 × I2,l2 be all the sets defined by:



40CHAPTER 9. SOME DYNAMIC UNDECIDABILITY RESULTS: USING A DISCRETE TIME

• Ii ,li = [li , li +1/4pi+p ] and li = 0.qi ,1qi ,2, . . . , qi ,pi , si ,1

• or Ii ,li = {li } and li = 0.qi ,1qi ,2, . . . , qi ,pi

for any si ,1 and qi , j elements of {1,3}.
The stack is nonempty in the first case, and empty in the second one. In what

follows, we will not make any more this distinction, and we will suppose, in the case
of an empty stack, that si ,1, si ,2, . . . , si ,p = 0.

Assume that (x1, x2) ∈ I1,l1 × I2,l2 encodes the configuration (q, a1γ1, a2γ2) of M
at time t , where a1, a2 ∈Σ, γ1,γ2 ∈Σ∗ and

q = (q1, q2) = (q1,1, . . . , q1,p1 , q2,1, . . . , q2,p2 ) ∈Q.

Call ∆xi = xi − li , for i ∈ {1,2}.
On I1,l1 × I2,l2 , we define f such that f (x1, x2) = (x ′

1, x ′
2) with

x ′
i = 0.q ′

i ,1, . . . , q ′
i ,pi

+∆x ′
i

where
q ′ = (q ′

1, q ′
2) = (q ′

1,1, q ′
1,2 . . . , q ′

1,p1
, q ′

2,1, q ′
2,2, . . . , q ′

2,p2
)

is the next internal state of M (fully determined by the current state q and the top-
of-stack letters a1 and a2), and ∆x ′

i defined by:

• ∆x ′
i = 4∆xi if stack i is popped,

• ∆x ′
i =

si ,1

4pi +1 +∆xi if stack i is unchanged

• ∆x ′
i = ai

4pi +1 + si ,1

4pi +2 + ∆xi
4

if ai is pushed on stack i

It can be checked that, in any case, f is built such that f (x1, x2) encodes config-
uration M at time t +1 whenever (x1, x2) encodes configuration M at time t .

f is piecewise linear, as it is defined as linear on each of the products I1,l1 × I2,l2 .
In order to complete the proof, we have to define f outside

C = ⋃
l1,l2

I1,l1 × I2,l2 ,

to the whole of [0,1]2: this extension cannot interfere with the simulation of M since
only points of C are used in a computation. There are continuous piecewise linear
extensions of f since the distance between two distinct products is greater than 0. As
a matter of fact, the suppremum distance is bounded below by mi n(1/4p1+1,1/4p2+1.
�

Remark 9.1 Observe that the proofs shows that one need very simple piecewise
affine functions to be able to simulate a Turing machine: basically, we only need
to be able to do additions, multiplications by 4 and divisions by 4, on appropriate
pieces.
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Remark 9.2 Observe that instead of extending the function outside C piecewise
linearly, we can even extend it in a C ∞ way. Hence, an arbitrary Turing machine
can be simulated in linear time by a mathcalC∞ function f : [0,1]2 → [0,1]2.

It is believe that however this is not possible using an analytic function over a
compact domain.

9.4.4 Using PCDs

Suppose we want to go further and simulate a Turing Machine with PCDs.

The first step is to see that one can do basic operations with PCDS.

For the encoding corresponding to “Idea 1”, assuming that the alphabet is Σ =
{0,1}, one just need to consider the following basic PCDs.

Of course, this is easy to generalize the idea to build basic blocks for the encoding
to “Idea 1′”: basically, one just need to do multiplications and divisions by 4 instead
of 2, which can be done using the same principles.

With these blocks, this is easy to get a PCD that simulates any Push-Down au-
tomaton with a PCD.

For example, for the Push-Down automaton

q1: S := PU SH(1,S); goto q2

q2: (v,S) := POP (S); if v = 1 then goto q2 else q1,
we just need to build a PCD like this:
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We get:

Theorem 9.2 (Asarin-Maler-Pnueli 94) Every Turing machine can be simulated
by a 4-dimensional PCD system.

Playing a little bit with the construction trying to reduce the dimension, one can
be easily convinced that dimension 3 is enough:

Theorem 9.3 (Asarin-Maler-Pnueli 94) Every Turing machine can be simulated
by a 3-dimensional PCD system.

However, this is not possible in dimension 2:

Theorem 9.4 (Asarin-Maler-Pnueli 94) But not by a 2-dimensional PCD sys-
tem.

Indeed:

Theorem 9.5 (Asarin-Maler-Pnueli 94) Reachability for planar 2-dimensional
PCD systems is decidable.

The main ingredient of the proof: Jordan’s theorem: All repetitive behaviors are
either contracting or expanding spirals:
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9.5 Extensions

Turing machines can be embedded into analog space discrete time systems with low
dimensional systems with other simple dynamics: [Moore, 1990], [Ruohonen, 1993],
[Branicky, 1995], [Ruohonen, 1997] consider general dynamical systems, [Koiran et al., 1994]
piecewise affine maps, [Siegelmann and Sontag, 1995] sigmoidal neural nets, [Siegelmann and Sontag, 1995],
closed form analytic maps, which can be extended to be robust [Graça et al., 2005a],
and [Kurganskyy and Potapov, 2005] one dimensional very restricted piecewise de-
fined maps.
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Chapter 10

Some Dynamic Undecidability
Results: Using a Continuous
Time with Smooth Dynamics

The embedding of Turing machines in continuous dynamical systems is often real-
ized in two steps. Turing machines are first embedded into analog space discrete
time systems, and then the obtained systems are in turn embedded into analog
space and time systems.

We saw the first step in previous chapter.

For the second step, the most common technique is to build a continuous time
and space system whose discretization corresponds to the embedded analog space
discrete time system.

We saw an example in previous chapter with PCDs. However, in PCD the dy-
namic is non-smooth: it is non-continuous. We discuss here what can be said for
smooth dynamics (at least continuous).

In a general setting, there are several classical ways to discretize a continuous
time and space system: One way is to use a virtual stroboscope: the flow xt =φ(t , x),
when t is restricted to integers, defines the trajectories of a discrete time dynamical
system. Another possibility is through a PoincarÃ© section: the sequence xt of the
intersections of trajectories with, for example, a hypersurface can provide the flow
of a discrete time dynamical system. See [Hirsch et al., 2003].

45
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The opposite operation, called suspension, is usually achieved by extending and
smoothing equations, and usually requires higher dimensional systems. This ex-
plains why Turing machines are simulated by three-dimensional smooth continu-
ous time systems in [Moore, 1990], [Moore, 1991], [Branicky, 1995] or by three-dimensional
piecewise constant differential equations in [Asarin et al., 1995], while they are known
to be simulated in discrete time by only two-dimensional piecewise affine maps in
[Koiran et al., 1994]. It is known that two-dimensional piecewise constant differen-
tial equations cannot1 simulate arbitrary Turing machines [Asarin et al., 1995], while
the question whether one-dimensional piecewise affine maps can simulate arbi-
trary Turing machines is open. Other simulations of Turing machines by continu-
ous time dynamical systems include the robust simulation with polynomial ODEs
in [Graça et al., 2005a], [Graça et al., 2007]. This result is an improved version of the
simulation of Turing machines with real recursive functions in [Campagnolo et al., 2000a],
where it is shown that smooth but non-analytic classes of real recursive functions
are closed under iteration. Notice that while the solution of a polynomial ODE is
computable on its maximal interval of existence, the simulation result shows that
the reachability problem is undecidable for polynomial ODEs.

10.1 Discussion

The key technique in embedding the time evolution of a Turing machine in a flow is
to use “continuous clocks” as in [Branicky, 1995].2

The idea is to start from the function f :R→R, preserving the integers, and build
the ordinary differential equation over R3

y ′
1 = c( f (r (y2))− y1)3θ(sin(2πy3))

y ′
2 = c(r (y1)− y2)3θ(−sin(2πy3))

y ′
3 = 1.

1See also already mentioned generalizations of this result in [Ceraens and Viksna, 1996] and
[Asarin et al., 2001].

2Branicky attributes the idea of a two phase computation to [Brockett, 1989] and [Brockett, 1991]. A
similar trick is actually present in [Ruohonen, 1993]. We will actually not follow [Branicky, 1995] but its
presentation in [Campagnolo, 2001].
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Here r (x) is a rounding-like function that has value n whenever x ∈ [n−1/4,n+1/4]
for some integer n, and θ(x) is 0 for x ≤ 0, exp(−1/x) for x > 0, and c is some suitable
constant.

The variable y3 = t is the time variable. Suppose y1(0) = y2(0) = x ∈ N. For t ∈
[0,1/2], y ′

2 = 0, and hence y2 is kept fixed to x. Now, if f (x) = x, then y1 will be kept
to x. If f (x) 6= x, then y1(t ) will approach f (x) on this time interval, and from the
computations in [Campagnolo, 2001], if a large enough number is chosen for c we
can be sure that |y1(1/2)− f (x)| ≤ 1/4. Consequently, we will have r (y1(1/2)) = f (x).
Now, for t ∈ [1/2,1], roles are inverted: y ′

1 = 0, and hence y1 is kept fixed to the
value f (x). On that interval, y2 approaches f (x), and r (y2(1)) = f (x). The equation
has a similar behavior for all subsequent intervals of the form [n,n +1/2] and [n +
1/2,n+1]. Hence, at all integer time t , f [t ](x) = r (y1(t )).3 [Loff et al., 2007] proposes
a similar construction that returns f [btc](x) for all t ∈R.

In other words, the construction above transforms a function overR into a higher
dimensional ordinary differential equation that simulates its iterations. To do so,
θ(sin(2πy3)) is used as a kind of clock. Therefore, the construction is essentially “hy-
brid” since it combines smooth dynamics with non-differentiable, or at least non-
analytic clocks to simulate the discrete dynamics of a Turing machine. Even if the
flow is smooth (i.e. in C∞) with respect to time, the orbit does not admit a tangent at
every point since y1 and y2 are alternatively constant. Arguably, one can overcome
this limitation by restricting Turing machine simulations to analytic flows and maps.
While it was shown that analytic maps over unbounded domains are able to simu-
late the transition function of any Turing machine in [Koiran and Moore, 1999], only
recently it was shown that Turing machines can be simulated with analytic flows
over unbounded domains in [Graça et al., 2005a]. It would be desirable to extend
the result to compact domains. However, it is conjectured in [Moore, 1998] that this
is not possible, i.e. that no analytic map on a compact finite-dimensional space can
simulate a Turing machine through a reasonable input and output encoding.

10.2 Some Dynamic Undecidability Results

We review some dynamic undecidability results obtained in literature (non-exhaustive
list).

• [Moore90]: simulation of Turing machine with a C ∞ discrete-time dynamic
over R2.

• [Ruohonen93]: simulation of a n-counter machine.

• [Asarin-Maler-Pnueli95]: simulation of a Turing machine with a PCD-system
over R3.

• [Branicky95]: simulation of a Turing machine with hybrid systems.

• [Siegelmann95]: simulation of an extended automata with a mirror system.

3 f [t ](x) denotes de t th iteration of f on x.



48CHAPTER 10. SOME DYNAMIC UNDECIDABILITY RESULTS: USING A CONTINUOUS TIME WITH SMOOTH DYNAMICS

• [GraÃ§a-Campagnolo-Buescu2005]: simulation of a Turing machine with a
GPAC.

• . . .



Chapter 11

Space and Time Contraction for
Continuous Time Systems

11.1 Considering Dynamical Systems as Language Rec-
ognizers

Dynamical systems can be considered as recognizers of languages: let Σ denote al-
phabet {0,1}. Σ∗ denotes words over this alphabet.

Two (very classical) encodings of words into real numbers will play some impor-
tant role in what follows:

• νX is the function that maps Σ∗ to [0,1] as follows: word w = w1 . . . wn ∈ {0,1}∗
is mapped to νX (w) =∑n

i=1
(2wi+1)

4i .

• νN is the function that maps Σ∗ to N as follows: word w = w1 . . . wn ∈ {0,1}∗ is
mapped to νN(w) =∑n

i=1(2wi +1)4i .

We can now define.

Definition 11.1 (Dynamical Systems as Language Recognizers) Let H be a con-
tinuous time or discrete time dynamical system over space X . We will consider
two cases: the case X = [−1,1]d (compact case), or X = Rd (unrestricted case).
Consider ν = νX for the compact case, ν = νN for the unrestricted case. Let
Vaccept be the set of x ∈ X with ‖x‖ ≤ 1/4. Let Vcompute be the set of x ∈ X with
‖x‖ ≥ 1/2. (or take Vaccept and Vcompute to any two disjoint subsets correspond-
ing to a polyhedron with rational coefficients, at a strictly positive distance one
from the other).

We will say that H computes (or semi-recognize) some language L ⊂Σ∗, over
alphabet Σ= {0,1}, if the following holds: for all w ∈ Σ∗, w ∈ L iff the trajectory
of H starting from (ν(w),0, · · · ,0,1) reaches Vaccept .

49
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For robustness reasons, we assume that, for any w 6∈ L, the corresponding
trajectory stay forever in Vcompute .

Given some notion of time associated to trajectories, we will say that L is recog-
nized in time T , if furthermore when the trajectory reaches Vaccept , trajectory has
a time bounded above by T . It is said accepted in time f : N→ N if furthermore
T ≤ f (|w |), for all w , where |w | stands for the length of w .

In this chapter, we consider continuous-time dynamical systems, and talk about
computability issues. In next chapter, we will focus on complexity.

11.2 Time Contraction for PCD systems

11.2.1 Zeno’s Paradox

We come back to PCD systems.
Consider the following PCD:

(1,−1)

(−1,−1) (−1,1/2)

(1,1)

(x,0)(−x/2,0) (x/2,0)

It takes a time 5x ∗1/2 to go from (x,0) to (x/2,0) that is to say to make a turn of
the spiral.

Second turn is made in time 5x ∗1/4. Third in times 5x ∗1/8. And so on.
Considering that

5/2(x +x/2+x/4+ . . . ) = 5x

is finite, one can consider that in time 5x the trajectory has reached (0,0, the limit of
the spiral. This happens in finite time, but requires a transfinite number of crossing
of regions.

This is called Zeno’s paradox: to a continuous finite time can correspond a trans-
finite number of discrete steps.

11.2.2 Using Zeno’s Paradox

Actually, using the fact that one can simulate a Turing machine M using a PCD sys-
tem in dimension 3, and this idea, it is possible to build a PCD system of dimension
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4 that decides whether M terminates or not, i.e. that solves the halting problem of
M .

The idea of the construction is the following.

Recall that one can build a PCD system in dimension 3 that simulates a Turing
machine M .

Let it correspond to the following (very abstract) picture:

Suppose that you divide all dimensions by 2, but keep speeds unchanged.

You get the following PCD:

The point is that if it takes a time T for the first one to make a turn, it will make a
time T /2 for the second to do exactly the same turn.

Of course, instead of dividing everything by 2, you can divide by 4, by 8 and so
on.

The trick is that if one put all of this in a 4-dimension space, say x, y, z,u, by
putting the first at u = 1, the second at u = 1/2, the third at u = 1/4 and so one, one
gets a “pyramid” that corresponds indeed to a PCD.

Graphically:
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In the first one, we may assume that there is a particular point that corresponds
to the accepting state of Turing machine M .

In the pyramid, it will correspond to an open segment. Assume that we fix that
the speed on this segment goes upward.

Assume that we add some regions that maps u to u/2 (and all variables divided
by 2 also), and that set the system that these regions are crossed at each turn: we will
get a PCD that simulates one step of Turing machine M in time 1, another step in
time 1/2, another step in time 1/4 and so one. As 1+1/2+1/4+1/8+·· · = 2, in time
2 either we will reach the accepting segment. Otherwise, we will reach the summit
of the pyramid.

In other words, if M accepts we will reach the accepting point at u = 1. If M
rejects, we will reach the point (0,0,0,0). That is to say, we decide whether M accepts
or not in finite time !!

Details can be found in [Asarin and Maler, 1998].

11.2.3 What can be computed?

Hierarchies of undecidable problems

We recall the following definition:

Definition 11.2 (Arithmetical hierarchy [Rogers Jr., 1987, Odifreddi, 1992]) The
classes Σk ,Πk ,∆k , for k ∈N, are defined inductively by:

• Σ0 is the class of the languages that are recursive;

• For k ≥ 1, Σk is the class of the languages that are recursively enumerable
in a set in Σk−1 (that is semi-recognized by a Turing machine with an ora-
cle in Σk−1);

• For k ∈N,Πk is defined as the class of languages whose complement are in
Σk , and ∆k is defined as ∆k =Πk ∩Σk .
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Several characterizations of the sets of the arithmetical hierarchy are known: see
[Odifreddi, 1992, Rogers Jr., 1987]. In particular assume a first order formula F , over
some recursive predicates, characterizing the elements of a set S ⊂N, is given. Then
S is in the arithmetical hierarchy and the Tarski-Kuratowski algorithm on formula
F returns a level of the arithmetical hierarchy containing S: see [Odifreddi, 1992,
Rogers Jr., 1987] for the full details.

The hyper-arithmetical hierarchy is an extension of the arithmetical hierarchy to
constructive ordinal numbers. It consists of the classes of languagesΣ1,Σ2, . . . ,Σk , . . . ,Σω,Σω+1,
Σω+2, . . . ,Σω2,Σω2+1, . . . ,Σω2 , . . . indexed by the constructive ordinal numbers. It is a
strict hierarchy and it satisfies the strict inclusions Σα ⊂ Σβ whenever α < β. It can
be related to the analytical hierarchy by ∆1

1 =∪βΣβ: see [Rogers Jr., 1987].

The idea of the construction of this hierarchy is the following:

• Σ1 is defined as the class of the recursively enumerable sets: that is to say Σ1 is
the class of the languages that are semi-recognized by a Turing machine.

• When k is a constructive ordinal and when the class Σk is defined, Σk+1 is
defined as the class of the languages that are recursively enumerable in a set
in Σk : that is to say Σk+1 is the class of the languages that are semi-recognized
by some oracle Turing machine whose oracle is a language in Σk .

• When k is a constructive limit ordinal, k = l i m ki , and when the classes (Σki )i∈N
are defined,Σk is defined as the class of the languages that are recursively enu-
merable in some fixed diagonalization of classes (Σki )i .

Summary:

If you prefer:

• Σ1 = Recursively enumerable sets.

• . . .

• Σk+1 = Sets recursively enumerable in a set in Σk .

• . . .

• Σω = Sets recursively enumerable in a diagonalisation of Σγ<ω

• Σω+1 = Sets recursively enumerable in a set in Σω

• . . .

• Σα=limγ = Sets recursively enumerable in a diagonalisation of Σγ<α.

• Σα+1 = Sets recursively enumerable in a set of Σα

• . . .

It is then possible to relate the computational power of PCD systems in finite
continuous time to the hyperarithmetical hierarchy ([Asarin and Maler, 1998, Bournez, 1999]).
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Dimension Languages semi-recognized

2 <Σ1

3 Σ1

4 Σ2

5 Σω
6 Σω+1

7 Σω2

8 Σω2+1
. . . . . .

2p+1 Σωp−1

2p+2 Σωp−1+1

In particular, any set definable by some arithmetical formula is decided in di-
mension 5 !!!



Chapter 12

The General Purpose Analog
Computers. Differential
Analyzers

In 1941, Claude Shannon introduced in [Shannon, 1941] the GPAC model as a model
for the Differential Analyzer [Bush, 1931], on which he worked as an operator.

12.1 Differential Analysers

Differential Analysers are mechanical (and later on electronics) continuous time
analog machines.

The Differential Analyzer was used from the 1930s to the early 60s to solve nu-
merical problems. For example, differential equations were used to solve ballistics
problems. These devices were first built with mechanical components and later
evolved to electronic versions.

55
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One of the MIT Differential Analyser
First differential analyzers were mechanical. Electronic versions were used from

late 40s until 70s.
Analog paradigm is selling some modern differential analyzers. I have one Ana-

log Paradigm Model-1 in my office at Ecole Polytechnique.
Underlying principles of the Differential Analysers can be attributed to Lord Kelvin

1876. First ever built machine was built under the supervision of V. Bush 1931 at MIT.
Applications were from gunfire control up to aircraft design. They were intensively
used during U.S. war effort.

12.2 The GPAC model

GPAC stands for General Purpose Analog Computer.
The GPAC was originally introduced by Shannon in [Shannon, 1941], and further

refined in [Pour-El, 1974, Lipshitz and Rubel, 1987, Graça and Costa, 2003, Graça, 2004].
Basically, a GPAC is any circuit that can be build from the 4 basic units of Figure

12.1, that is to say from basic units realizing constants, additions, multiplications
and integrations, all of them working over analog real quantities (that were corre-
sponding to angles in the mechanical Differential Analysers, and later on to voltage
in the electronic versions).

Actually, not all kinds of interconnections must be allowed since this may lead to
undesirable behavior (e.g. non-unique outputs. For further details, refer to [Graça and Costa, 2003]).

In other words, a GPAC may be seen as a circuit built of interconnected black
boxes, whose behavior is given by Figure 12.1, where inputs are functions of an in-
dependent variable called the time (in an electronic Differential Analyzer, inputs
usually correspond to electronic voltages). These black boxes add or multiply two
inputs, generate a constant, or solve a particular kind of Initial Value Problem de-
fined with an Ordinary Differential Equation (ODE for short).
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k e0e1

constant: e0 = ke1

+Π e0
e1
e2

product: e0 = e1e2

e0
e1
e2

summer: e0 =−(e1 +e2)

e0

e(0)

e1

integrator: e0 =−∫ t
0 (e1(u)du +e(0))

Figure 12.1: Circuit presentation of the GPAC: a circuit built from basic units. Pre-
sentation of the 4 types of units: constant, adder, multiplier, and integrator.

Figures 12.3 illustrates for example how the sine function can generated using
two integrators, with suitable initial state, as being the solution of ordinary differen-
tial equation {

y ′(t )= z(t )
z ′(t )=−y(t )

with suitable initial conditions.
The original GPAC model introduced by Shannon has the feature that it works

in real time: for example if the input t is updated in the GPAC circuit of Figure 12.3,
then the output is immediately updated for the corresponding value of t .

Shannon, in his original paper, already mentioned that the GPAC generates poly-
nomials, the exponential function, the usual trigonometric functions, their inverses,
and their composition. More generally, Shannon claimed that all functions gener-
ated by a GPAC are differentially algebraic in the sense of the following definition.

Definition 12.1 A unary function y is differentially algebraic (d.a.) on the inter-
val I if there exists an n ∈ N and a nonzero polynomial p with real coefficients
such that

p
(
t , y, y ′, ..., y (n))= 0, on I . (12.1)

As a corollary, and noting that the Gamma function Γ(x) = ∫ ∞
0 t x−1e−t d t is not

d.a. [Rubel, 1989], we get that

Proposition 12.1 The Gamma function cannot be generated by a GPAC.

Another famous example of not d.a. function is Riemann’s Zeta function ζ(x) =∑∞
k=0

1
kx (proof of non d.a. by Hilbert).

If we have in mind that these functions are known to be computable under the
computable analysis framework [Pour-El and Richards, 1989], the previous result has
long been interpreted as evidence that the GPAC is a somewhat weaker model than
computable analysis.
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Figure 12.2: Problematic circuits: (I apologize: the representation of basic blocks
differ from other figures as the current images are taken from some other source)
.

However, Shannon’s proof relating functions generated by GPACs with d.a. func-
tions was incomplete (as pointed out and partially corrected in [Pour-El, 1974, Lipshitz and Rubel, 1987]).
Actually, as pointed out in [Graça and Costa, 2003], the original GPAC model suffers
from several robustness problems.

12.3 GPAC and polynomomial Initial Value Problems

However, for the more robust class of GPACs defined in [Graça and Costa, 2003] by
restricting the possible layout of a GPAC, the following stronger property holds:

Proposition 12.2 A scalar function f : R→ R is generated by a GPAC iff it is a
component of the solution of a system

y ′ = p(y, t ), (12.2)

where p is a vector of polynomials. A function f :R→Rk is generated by a GPAC
iff all of its components are.

Basically, the idea of the proof is just to introduce a variable for each output of
a basic unit, and write the corresponding ordinary differential equation (ODE), and
observe that it can be written as an ODE with a polynomial right hand side.

For a concrete example of Proposition 12.2, see Figure 12.3. From now on, we
will mostly talk about GPACs as being systems of ODEs of the type (12.2).

We say that a function f : R→ R is generable (by a GPAC) if and only if it corre-
sponds to some component of a solution of such a polynomial initial value problem
(12.2).

The discussion on how to go from univariate to multivariate functions, that is
to say from functions f : R→ Rm to functions f : Rn → Rm is briefly discussed in
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−1

cos(t ) −si n(t )

x y

Figure 12.3: Example of GPAC circuit: computing sine and cosine with two variables

[Shannon, 1941], but no clear definitions and results for this case have been stated
or proved previously, up to our knowledge. This is the purpose of the following part
of the course. Another objective is to introduce basic measures of the resources used
by a GPAC (in particular on the growth of functions), which might be used in the
future to establish complexity results for functions generated with GPACs.

We will introduce in another course formally the notion of generable functions
which are solutions of a polynomial initial-value problem (PIVP), and generalize this
notion to several input variables. We will prove that this class enjoys a number of
stability and robustness properties.

12.4 Programming with the GPAC

We here provide some examples of programs.

12.4.1 Exponential

Exponential: E(t ) = K exp(−λt )

λ

K−1

E

x

12.4.2 Linear operations

Linear function: x(t ) = t
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−1

1

Linear operations:

e1 e0

e0 =−e1

2

e1
e0

e0 =−e1

3

e1
e2

e3 e0

e0 = e1 +e2

2
−e3

12.4.3 Polynomials

Parabola: x(t ) = (−1+ t )2

Solution 1: With a product:

−1

1

+Π e

Solution 2: with integrators:

−1

1 0

12.4.4 Damped Spring

Damped spring
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mass m

spring constant k

my ′′+αy ′+k y = 0

Hence

y ′′ =−αy ′+k y

m
Damped spring: y ′′ =−αy ′+k y :

m = 1.

k

α

y ′′ -y ′ y

+1 −1

Example:

• k = 0.8

• α= 0.2

12.4.5 Lorenz’s attractor

Lorenz’s attractor:
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
x ′ = σ(y −x)
y ′ = ρx − y −xz
z ′ = xz −βz

σ= 10,β= 8/3,ρ = 28

Rescaling: 
x = ∫

1.8y −xd t +C
s = 1−2.678z
y = ∫

1.5556xs −0.1yd t
z = ∫

1.5x y −0.2667zd t

The program:

+Π c1

c4

c2 +Π

c3

c5

c6 −y10

+1
1010

+1

x y

−x

10
s

1
2

3

1

2
1 2

c1 = 0.15, c2 = 0.268, c3 = 0.1536, c4 = 0.2667, c5 = 0.1, c6 = 0.18



Chapter 13

(GPAC) Generable Functions

13.1 Notations

In this document, R denotes the real numbers, R+ = [0,+∞) the nonnegative real
numbers, N= {0,1,2, . . .} the natural numbers, Z the integers, Ja,bK= {a, a +1, . . . ,b}
the integers between a and b,Q the rational numbers, RP the polynomial time com-
putable real numbers [Ko, 1991], RG the smallest generable field (see Section 13.7).
Mn,d (K) denotes the set of n ×d matrices over the ring K. For any set X , P (X ) de-
notes the powerset of X and #X the cardinal of X . For any function f , dom f is the
domain of f , f [n] the nth iterate of f , f �X the restriction of f to X , J f (x) denotes
the Jacobian matrix of f at x. For any vector y ∈ Rn and e 6 n, y1..e = (y1, . . . , ye )
denotes the first e components of y and

∥∥y
∥∥ = max(|y1|, . . . , |yn |) denotes the infin-

ity norm. For any x0 ∈ Rn and r > 0, Br (x0) = {x : ‖x −x0‖2 < r } denotes the open
of radius r and center p for the euclidean norm. Given a (multivariate) polyno-
mial p, deg(p) denotes its degree and Σp the sum of the absolute value of its coeffi-
cients. We denote by K[Rd ] the set of polynomial functions in d variables with co-
efficients in K. Given a vector of polynomial p = (p1, . . . , pk ), which we simply refer
to as a polynomial, deg(p) = max(deg(p1), . . . ,deg(pk )) and Σp = max(Σp1, . . . ,Σpk ).
We denote by Kk [Rd ] the set of vectors of polynomial functions in d variables of
size k with coefficients in K. In this article, we write poly to denote an unspecified
polynomial. For any x ∈ R, sgn(x) denotes the sign of x, bxc the integer part of x,
intk (x) = max(0,min(k,bxc)), bxe the nearest integer (undefined for n + 1

2 ).

13.2 Generable functions

In this section, we will define a notion of function generated by a PIVP. From pre-
vious discussions, they correspond to functions generated by the General Purpose
Analog Computers of Claude Shannon [Shannon, 1941];

This class of functions is closed by a number of natural operations such as arith-
metic operators or composition. In particular, we will see that those functions are
always analytic. The major property of this class is the stability by ODE solving: if

63
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f is generable and y satisfies y ′ = f (y) then y is generable. This means that we can
design differential systems where the right-hand side contains much more general
functions than polynomials, and this system can be rewritten to use polynomials
only.

Several of the results here are extensions to the multidimensional case of results
established in [Graça, 2007]. Moreover, a noticeable difference is that here we are
also talking about complexity, whereas [Graça, 2007] is often not precise about the
growth of functions as only motivated by computability theory.

In this section, K will always refer to a real field, for example K = Q. The basic
definitions work for any such field but the main results will require some assump-
tions onK. These assumptions will be formalized in Definition 13.2 and detailed in
Section 13.7.

13.2.1 Unidimensional case

We start with the definition of generable functions from R to Rn . Those are defined
as the solution of some polynomial IVP (PIVP) with an additional boundedness con-
straint. This will be of course key to talk about complexity theory for the GPAC, since
if no constraint is put on the growth of functions, it is easy to see that arbitrary grow-
ing functions can be generated by a GPAC (or, equivalently, by a PIVP), such as the
t 7→ exp(exp(. . .exp(t ))) function. Indeed consider the following system

y1(0)= 1
y2(0)= 1

. . .
yn(0)= 1


y ′

1(t )= y1(t )
y2(t )= y1(t )y2(t )

. . .
y ′

d (t )= y1(t ) · · · yn(t )

This system has the form (??) and can be solved explicitly. It has the following solu-
tion:

y1(t ) = e t yn+1(t ) = e yn (t )−1 yd (t ) = ee . . .e
et −1

−1

Hence, although previous papers about the GPAC studied computability, like
[Shannon, 1941], [Pour-El, 1974], [Graça and Costa, 2003] or [Graça, 2004], they said
nothing about complexity. And as the previous example shows, the output of a GPAC
can have an arbitrarily high growth and thus arbitrarily high complexity. Hence, to
distinguish between reasonable GPACs, it is natural to bound the growth of the out-
puts of a GPAC and use those bounds as a complexity measure. Moreover, as we have
shown in [?], we can compute (in the Computable Analysis setting [Brattka et al., 2008])
the solution of a PIVP in time polynomial in the growth bound of the PIVP. This mo-
tivates the following definition (in what follows, K[Rn] denotes polynomial func-
tions with n variables and with coefficients in K, where variables live in Rn and1

R+ = [0,+∞[):

1We write [a,b] (respectively: ]a,b], [a,b[, ]a,b[) for closed (resp. semi-closed, open) interval.
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Definition 13.1 (Generable function) Letsp :R+ →R+ be a nondecreasing func-
tion and f :R→Rm . We say that f ∈ GVALK[sp] if and only if there exists n>m,
y0 ∈Kn and p ∈Kn[Rn] such that there is a (unique) y :R→Rn satisfying for all
time t ∈R:

• y ′(t ) = p(y(t )) and y(0) = y0 I y satisfies a differential equation

• f (t ) = y1..m(t ) = (y1(t ), . . . , ym(t )) I f is a component of y

•
∥∥y(t )

∥∥6 sp(|t |) I y is bounded by sp

The set of all generable functions is denoted by GVALK = ⋃
sp:R→R+ GVALK[sp].

When this is not ambiguous, we do not specify the field K and write GVAL[sp]
or simply GVAL. We will also write GVAL[poly] (or GVALK[poly]) as a synonym
of GVAL[sp] (respectively: GVALK[sp]) for some polynomial sp (see coming Re-
mark 13.9).

Remark 13.1 (Uniqueness) The uniqueness of y in Definition 13.1 is a conse-
quence of the Cauchy-Lipschitz theorem. Indeed a polynomial is a locally Lips-
chitz function.

Remark 13.2 (Regularity) As a consequence of the Cauchy-Lipschitz theorem,
the solution y in Definition 13.1 is at least C∞. It can be seen that it is in fact real
analytic, as it is the case for analytic differential equations in general [Arnold, 1978].

Remark 13.3 (Multidimensional output) It should be noted that although Def-
inition 13.1 defines generable functions with output inRm , it is completely equiv-
alent to say that f is generable if and only if each of its component is ( i.e. fi is
generable for every i ); and restrict the previous definition to functions from R to
R only. Also note that if y is the solution from Definition 13.1, then obviously y is
generable.

Although this might not be obvious at first glance, this class contains polyno-
mials, and contains many elementary functions such as the exponential function,
as well as the trigonometric functions. Intuitively, all functions in this class can be
computed efficiently by classical machines, where sp measures some “hardness” in
computing the function. We took care to choose the constants such as the initial
time and value, and the coefficients of the polynomial in K. The idea is to prevent
any uncomputability from arising by the choice of uncomputable real numbers in
the constants.

Example 13.1 (Polynomials are generable) Let p inQ(π)[R]. For example p(x) =
x7 −14x3 +π2. We will show that p ∈ GVALK[sp] where sp(x) = x7 +14x3 +π2.
We need to rewrite p with a polynomial differential equation: we immediately
get that p(0) =π2 and p ′(x) = 7x6 −42x2. However, we cannot express p ′(x) as a
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polynomial of p(x) only: we need access to x. This can be done by introducing a
new variable v(x) such that v(x) = x. Indeed, v ′(x) = 1 and v(0) = 0. Finally we
get: {

p(0)=π2

p ′(x)= 7v(x)6 −42v(x)2

{
v(0)= 0

v ′(x)= 1

Formally, we define y(x) = (p(x), x) and show that y(0) = (π2,0) ∈K2 and y ′(x) =
p(y(x)) where p1(a,b) = 7b6 − 42b2 and p2(a,b) = 1. Also note that the coeffi-
cients are clearly in Q(π)). We also need to check that sp is a bound on

∥∥y(x)
∥∥

(for x ≥ 0): ∥∥y(x)
∥∥ = max(|x|, |x7 −14x3 +π2|) ≤ sp(x)

This shows that p ∈ GVALK[sp] and can be generalized to show that any polyno-
mial in one variable is generable.

Example 13.2 (Some generable elementary functions) We will check that exp ∈
GVALQ[exp] and sin,cos,tanh ∈ GVALQ[x 7→ 1]. We will also check that arctan ∈
GVALQ[x 7→ max(x, π2 )].

• A characterization of the exponential function is the following: exp(0) = 1
and exp′ = exp. Since

∥∥exp
∥∥ = exp, it is immediate that exp ∈ GVALQ[exp].

The exponential function might be the simplest generable function.

• The sine and cosine functions are related by their derivatives since sin′ =
cos and cos′ =−sin. Also sin(0) = 0 and cos(0) = 1, and ‖(sin(x),cos(x))‖6
1, we get that sin,cos ∈ GVALQ[x 7→ 1] with the same system.

• The hyperbolic tangent function will be very useful in this paper. Is it
known to satisfy the very simple polynomial differential equation tanh′ =
1 − tanh2. Since tanh(0) = 0 and | tanh(x)| 6 1, this shows that tanh ∈
GVALQ[x 7→ 1].

• Another very useful function will be the arctangent function. A possible
definition of the arctangent is the unique function satisfying arctan(0) =
0 and arctan′(x) = 1

1+x2 . Unfortunately this is neither a polynomial in
arctan(x) nor in x. A common trick is to introduce a new variable z(x) =

1
1+x2 so that arctan′(x) = z(x), in the hope that z satisfies a PIVP. This is

the case since z(0) = 1 and z ′(x) = −2x
(1+x2)2 = −2xz(x)2 which is a poly-

nomial in z and x. We introduce a new variable for x as we did in the
previous examples. Finally, define y(x) = (arctan(x), 1

1+x2 , x) and check

that y(0) = (0,1,0) and y ′(x) = (y2(x),−2y3(x)y2(x)2,1). The π
2 bound on

arctan is a textbook property, and the bound on the other variables is im-
mediate.

Not only the class of generable functions contains many classical and useful
functions, but it is also closed under many operations. We will see that the sum,
difference, product and composition of generable functions are still generable.
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The issue of constants

Before moving on to the properties of this class, we need to mention the easily over-
looked issue about constants, best illustrated as an example.

Example 13.3 (The issue of constants) Let K be a field, containing at least the
rational numbers. Assume that generable functions are closed under composi-
tion, that is for any two f , g ∈ GVALK we have f ◦ g ∈ GVALK. Let α ∈ K and
g = x 7→ α. Then for any ( f : R→ R) ∈ GVALK, f ◦ g ∈ GVALK. Using Definition
13.1, we get that f (g (0)) ∈Kwhich means f (α) ∈K for anyα ∈K. In other words,
Kmust satisfy the following property:

f (K) ⊆K ∀ f ∈ GVALK

This property does not hold for general fields.

The example above outlines the need for a stronger hypothesis on K if we want
to be able to compose functions. Motivated by this example, we introduce the fol-
lowing notion of generable field.

Definition 13.2 (Generable field) A fieldK is generable if and only ifQ⊆K and
for any α ∈K and ( f :R→R) ∈ GVALK, we have f (α) ∈K.

!
From now on, we will assume that K is a generable field. See Section 13.7
for more details on this assumption.

Example 13.4 (Usual constants are generable) In this paper, we will use again
and again that some well-known constants belong to any generable field. We
detail the proof for π and e:

• It is well-known that π
4 = arctan(1). We saw in Example 13.2 that arctan ∈

GVALQ and since 1 ∈Kwe get that π
4 ∈K becauseK is a generable field. We

conclude that π ∈K becauseK is a field and 4 ∈K.

• By definition, e = exp(1) and exp ∈ GVALQ, so e ∈K becauseK is a genera-
ble field and 1 ∈K.

Robustness of the class

Lemma 13.1 (Arithmetic on generable functions) Let f ∈ GVAL[sp] and g ∈
GVAL[sp].

• f + g , f − g ∈ GVAL[sp+sp]

• f g ∈ GVAL[max(sp,sp,spsp)]

• 1
f ∈ GVAL[max(sp,sp′)] where sp′(t ) = 1

| f (t )| , if f never cancels

• f ◦ g ∈ GVAL[max(sp,sp◦sp)]
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Note that the first three items only require thatK is a field, whereas the last item
also requiresK to be a generable field.

Proof: Assume that f : R→ Rm and g : R→ R`. We will make a detailed proof
of the product and composition cases, since the sum and difference are much sim-
pler. The intuition follows from basic differential calculus and the chain rule: ( f g )′ =
f ′g + f g ′ and ( f ◦ g )′ = g ′( f ′ ◦ g ). Note that `= 1 for the composition to make sense
and ` = m for the product to make sense (componentwise). The only difficulty in
this proof is technical: the differential equation may include more variables than
just the ones computing f and g . This requires a bit of notation to stay formal. Ap-
ply Definition 13.1 to f and g to get p, p, y0, y0. Consider the following systems:

y(0)= y0

y ′(t )= p(y(t ))
y(0)= y0
y ′(t )= p(y(t ))


zi (0)= y0,i y0,i
z ′

i (t )= pi (y(t ))ȳi (t )+ yi (t )p i (ȳ(t ))
ui (0)= fi (y0,1)
u′

i (t )= p i (y(t ))p(u(t ))

i ∈ J1,mK

Those systems are clearly polynomial. By construction, u and z exist over R since
zi (t ) = yi (t )ȳi (t ) satisfies the differential equation over R (indeed y and ȳ exist over
R). Similarly, ui (t ) = yi (ȳ(t )) exists over R and satisfies the equation. Remember
that by definition, for any i ∈ J1,mK and j ∈ J1,`K, fi (t ) = yi (t ) and g j (t ) = z j (t ).
Consequently, zi (t ) = fi (t )gi (t ) and ui (t ) = fi (g1(t )).

Also by definition,
∥∥y(t )

∥∥ 6 sp(t) and
∥∥y(t )

∥∥ 6 sp(t ). It follows that |zi (t )| 6
|yi (t )||y i (t )| 6 sp(t )sp(t ), and similarly we have |ui (t )| 6 | fi (g1(t ))| 6 sp(g1(t )) 6
sp(sp(t )).

The case of 1
g is very similar: define g = 1

f then g ′ = − f ′g 2. The only difference

is that we don’t have an a priori bound on g except 1
| f | , and we must assume that f

is never zero for g to be defined over R.
Finally, a very important note about constants and coefficients which appear in

those systems. It is clear that y0,i y0,i ∈ K because K is a field. Similarly, for 1
f we

have 1
f (0) = 1

y0,1
∈K. However, there is no reason in general for fi (y0,1) to belong to

K, and this is where we need the assumption thatK is generable. �

13.2.2 Multidimensional case

We introduced generable functions as a special kind of function from R to Rn . We
saw that this class nicely contains polynomials, however it comes with two defects
which prevents other interesting functions from being generable:

• The domain of definition is R: this is very strong, since other “easy” targets
such as tan, log or even x 7→ 1

x cannot be defined, despite satisfying polyno-
mial differential equations.

• The domain of definition is one-dimensional: it would be useful to define gen-
erable functions in several variables, like multivariate polynomials.
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∫
f (t ) = e t

t

Figure 13.1: Simple GPAC

∫
x1

∫
x2

+1 g

Figure 13.2: GPAC with two inputs

+ h1
∫
∫

×

−2××

∫
x2 h3

×

∫
x1 h2

1

Figure 13.3: A more involved multidimensional GPAC

The first issue can be dealt with by adding restrictions on the domain where the
differential equation holds, and by shifting the initial condition (0 might not belong
to the domain). Overcoming the second problem is less obvious.

About motivation of definitions

The examples below give two intuitions before introducing the formal definition.
The first example draws inspiration from multivariate calculus and differential form
theory. The second example focuses on GPAC composition. As we will see, both
examples highlight the same properties of multidimensional generable functions.

Example 13.5 (Multidimensional GPAC) The history and motivation for the GPAC
have been described above. The GPAC is the starting point for the definition of
generable functions. It crucially relies on the integrator unit to build interesting
circuits. In modern terms, the integration is often done implicitly with respect to
time, as shown in Figure 13.1 where the corresponding equation is f (t ) = ∫

f , or
f ′ = f . Notice that the circuit has a single “floating input” which is t and is only
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∫
t
u ∫

w
v

 ×u
v ∫

w
t

×v
u ∫

y
w

 

× ∫

× ∫ + y

w
u

v

+v
u ∫

y
w

 

∫w
u

∫
v

+ y

Figure 13.4: GPAC rewriting

used in the “derivative port” of the integrator. What would be the meaning of a
circuit with several such inputs, as shown in Figure 13.2 ? Formally writing the
system and differentiating gives:

g =
∫

1d x1 +
∫

1d x2 = x1 +x2

d g = d x1 +d x2

Figure 13.3 gives a more interesting example to better grasp the features of these
GPAC. Using the same “trick” as before we get:

h2 = ∫
1d x1

h3 = ∫
1d x2

h1 = ∫ −2h2
1h2d x1 +

∫ −2h2
1h3d x2

dh2 = d x1

dh3 = d x2

dh1 =−2h2
1h2d x1 −2h2

1h3d x2

It is now apparent that the computed function h satisfies a special property
because dh1(x) = p1(h1,h2,h3)d x1+p2(h1,h2,h3)d x2 where p1 and p2 are poly-
nomials. In other words, dh1 = p(h) ·d x where h = (h1,h2,h3), x = (x1, x2) and
p = (p1, p2) is a polynomial vector. We obtain similar equations for h2 and h3.
Finally, dh = q(h)d x where q(h) is the polynomial matrix given by:

q(h) =
−2h2

1h2 −2h2
1h3

1 0
0 1


This can be equivalently stated as Jh = q(h). This is a generalization of PIVP to
polynomial partial differential equations.
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To complete this example, note that it can be solved exactly and h1(x1, x2) =
1

x2
1+x2

2
which is defined over R2 \ {(0,0)}.

Example 13.6 (GPAC composition) Another way to look at Figure 13.3 and Fig-
ure 13.2 is to imagine that x1 = X1(t ) and x2 = X2(t ) are functions of the time
(produced by other GPACs), and rewrite the system in the time domain with
h = H(t ):

H ′
2(t ) = X ′

1(t )
H ′

3(t ) = X ′
2(t )

H ′
1(t ) =−2H1(t )2H2(t )X ′

1(t )−2H1(t )2H3(t )X ′
2(t )

We obtain a system similar to the unidimensional PIVP: for a given choice of X
we have H ′(t ) = q(H(t ))X ′(t ) where q(h) is the polynomial matrix given by:

q(h) =
−2h2

1h2 −2h2
1h3

1 0
0 1


Note that this is the same polynomial matrix as in the previous example. The
relationship between the time domain H and the original h is simply given by
H(t ) = h(x(t )). This approach has a natural interpretation on the GPAC circuit
in terms of circuit rewriting. Assume that x1 and x2 are the outputs of two GPACs
(with input t), i.e. x1 = x1(t ) and x2 = x2(t ). Then x1, x2 are given by the first two
components of a polynomial ODE (??), i.e. x1(t ) = y1(t ) and x2(t ) = y2(t ). More-
over one has x ′

1(t ) = p1(y), x ′
2(t ) = p2(y). That means that the output H(t ) =

(H1(t ), H2(t ), H3(t )) of the GPAC of Figure 13.3 satisfies

H ′(t ) = q(H(t ))X ′(t ) = q(H(t ))(p1(y), p2(y))

and therefore consists of the first three components of the polynomial ODE given
by

H ′ = q(H(t ))(p1(y), p2(y))
y ′ = p(y)

Thus, if x1 and x2 are the outputs of the some GPACs, depending on one input
t , and if we connect the outputs of these two GPACs to the inputs of the two-
dimensional GPAC of Figure 13.3, we obtain a one-input GPAC computing H(t ),
where t is the input. Note that in a normal GPAC, the time t is the only valid
input of the derivative port of the integrator, so we need to rewrite integrators
which violate this rule. This can be done by rewriting the ODE defining H(t )
into a polynomial ODE as done above, and then by implementing a GPAC which
computes the solution of this ODE such that the time t is the only valid input
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of the derivative port of each integrator (this is trivial to implement). This pro-
cedure always stops in finite time. Moreover it always works as long as q(·) is a
matrix consisting of polynomials.

Formal definitions

These considerations lead to state that the following generalization is clearly the one
we want:

Definition 13.3 (Generable function) Let d ,` ∈ N, I an open and connected
subset of Rd , sp :R+ →R+ a nondecreasing function and f : I →R`. We say that
f ∈ GVALK[sp] if and only if there exists n > `, p ∈ Mn,d (K) [Rn], x0 ∈ (Kd ∩ I ),
y0 ∈Kn and y : I →Rn satisfying for all x ∈ I :

• y(x0) = y0 and Jy (x) = p(y(x)) (i.e. ∂ j yi (x) = pi j (y(x))) I y satisfies a
differential equation

• f (x) = y1..`(x) I f is a component of y

•
∥∥y(x)

∥∥6 sp(‖x‖) I y is bounded by sp

Remark 13.4 (Uniqueness) The uniqueness of y in Definition 13.3 can be seen
in two different ways: by uniqueness of the unidimensional case and by analytic-
ity. Note that the existence of y (and thus the domain of definition) is a hypothesis
of the definition.

Consider x ∈ I and γ a smooth curvea from x0 to x with values in I and
consider z(t ) = y(γ(t )) for t ∈ [0,1]. It can be seen that z ′(t ) = Jy (γ(t ))γ′(t ) =
p(y(γ(t ))γ′(t ) = p(z(t ))γ′(t ), z(0) = y(x0) = y0 and z(1) = y(x). The initial value
problem z(0) = y0 and z ′(t ) = p(z(t ))γ′(t ) satisfies the hypothesis of the Cauchy-
Lipschitz theorem and as such admits a unique solution. Since this IVP is in-
dependent of y, the value of z(1) is unique and must be equal to y(x), for any
solution y and any x. This implies that y must be unique.

Alternatively, use Proposition 13.4 to conclude that any solution must be an-
alytic. Assume that there are two solutions y and z. Then all partial derivatives
at any order at the initial point x0 are equal because they only depend on y0.
Thus y and z have the same partial derivatives at all order and must be equal on
a small open ball around y0. A classical argument of finite covering with open
balls then extends this argument to any point of the interior of domain of defini-
tion that is connected to y0. Since the domain of definition is assumed to be open
and connected, this concludes to the equality of y and z.

asee Remark 13.6

Remark 13.5 (Regularity) In the euclidean space Rn , C k smoothness is equiv-
alent to the smoothness of the order k partial derivatives. Consequently, the
equation Jy = p(y) on the open set I immediately proves that y is C∞. Propo-
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sition 13.4 shows that y is in fact real analytic.

Remark 13.6 (Domain of definition) Definition 13.3 requires the domain of def-
inition of f to be connected, otherwise it would not make sense. Indeed, we can
only define the value of f at point u if there exists a path from x0 to u in the do-
main of f . It could seem, at first sight, that the domain being “only” connected
may be too weak to work with. This is not the case, because in the euclidean space
Rd , open connected subsets are always smoothly arc connected, that is any two
points can be connected using a smooth C 1 (and even C∞) arc. Proposition 13.5
extends this idea to generable arcs, with a very useful corollary.

Remark 13.7 (Multidimensional output) Remark 13.3 also applies to this defi-
nition: f :⊆Rd →Rn is generable if and only if each of its component is generable
( i.e. fi is generable for all i ).

Remark 13.8 (Definition consistency) It should be clear that Definition 13.3
and Definition 13.1 are consistent. More precisely, in the case of unidimensional
function (d = 1) with domain of definition I =R, both definitions are exactly the
same since Jy = y ′ and Mn,1 (R) =Rn .

The following example focuses on the second issue mentioned at the beginning
of the section, namely the domain of definition.

Example 13.7 (Inverse and logarithm functions) We illustrate that the choice
of the domain of definition makes important differences in the nature of the
function.

• Let 0 < ε < 1 and define fε : x ∈]ε,∞[ 7→ 1
x . It can be seen that f ′

ε(x) =
− fε(x)2 and fε(1) = 1. Furthermore, | fε(x)| 6 1

ε thus fε ∈ GVAL[α 7→ 1
ε ].

So in particular, fε ∈ GVAL[poly] for any ε > 0. Something interesting
arises when ε→ 0: define f0(x) = x ∈ (0,∞) 7→ 1

x . Then f0 is still generable

and | f0(x)|6 1
|x| . Thus f0 ∈ GVAL[α 7→ 1

α ] but f0 ∉ GVAL[poly]. Note that

strictly speaking, f0 ∈ GVAL[sp] where sp(α) = 1
α and sp(0) = 0 because

the bound function needs to be defined over R+.

• A similar phenomenon occurs with the logarithm: define gε : x ∈ (ε,∞) 7→
ln(x). Then g ′

ε(x) = fε(x) and gε(1) = 0. Furthermore, |gε(x)|6max(|x|, | lnε|).
Thus gε ∈ GVAL[α 7→ max(α, | lnε|, 1

ε )], and in particular gε ∈ GVAL[poly]
for any ε > 0. Similarly, g0 : x ∈]0,∞[ 7→ ln(x) is generable but does not
belong to GVAL[poly].
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Example 13.8 (Classical non-generable functions) While many of the usual real
functions are known to be generated by a GPAC, a notable exception is Euler’s
Gamma functionΓ(x) = ∫ ∞

0 t x−1e−t d t function or Riemann’s Zeta function ζ(x) =∑∞
k=0

1
kx [Shannon, 1941], [Pour-El and Richards, 1989]. Furthermore, Riemann’s

Zeta function (over, for example, [2,∞)) is an example of real-analytic, polynomially-
bounded that is not in GVAL[poly].

Example 13.9 (Generable functions not in GVAL[poly]) We have seen that Rie-
mann’s Zeta function ζ is an example of a function not in GVAL[poly] due to the
fact that it is not generable. An example of a generable function not belonging
to GVAL[poly] is the exponential ex because, while it is generable, its derivative
is not bounded by another polynomial. Note that it is quite possible to have
bounded generable functions which do not belong to GVAL[poly]. An example
is the function given by f (x) = sin(ex ) which is generable and bounded, but its
derivative f ′(x) = ex cos(ex ) is not bounded by any polynomial.

The previous examples show that GVALK[sp] can be used to define a proper hi-
erarchy of generable functions. Adapting the examples given in Example 13.9 one
can show for instance that

GVAL[poly]$GVAL[ex ]$GVAL[eex
]$ . . .

In particular these examples show the following result.

Theorem 13.1 (Existence of noncollapsing classes) GVAL[poly]$GVAL.

13.3 Stability properties

In this section, the major results will the be stability of multidimensional generable
functions under arithmetical operators, composition and ODE solving. Note that
some of the results use properties onKwhich can be found in Section 13.7.1.

Lemma 13.2 (Arithmetic on generable functions) Let d ,`,n,m ∈N, sp,sp :R→
R+, f :⊆Rd →Rn ∈ GVAL[sp] and g :⊆R`→Rm ∈ GVAL[sp]. Then:

• f + g , f − g ∈ GVAL[sp+sp] over dom f ∩dom g if d = ` and n = m

• f g ∈ GVAL[max(sp,sp,spsp)] if d = ` and n = m

• f ◦ g ∈ GVAL[max(sp,sp◦sp)] if m = d and g (dom g ) ⊆ dom f

Proof: We focus on the case of the composition, the other cases are very similar.
Apply Definition 13.3 to f and g to respectively get l , l̄ ∈ N, p ∈ Ml ,d (K) [Rl ],

p̄ ∈ Ml̄ ,` (K) [Rl̄ ], x0 ∈ dom f ∩Kd , x̄0 ∈ dom g ∩K`, y0 ∈Kl , ȳ0 ∈Kl̄ , y : dom f → Rl
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and ȳ : dom g → Rl̄ . Define h = y ◦ g , then Jh = Jy (g )Jg = p(h)p̄1..m(ȳ) and h(x̄0) =
y(ȳ0) ∈Kl by Corollary 13.2. In other words (ȳ ,h) satisfy:{

ȳ(x̄0)= y0 ∈Kl̄

h(x̄0)= y(ȳ0) ∈Kl

{
ȳ ′= p̄(ȳ)
h′= p(h)p̄1..m(ȳ)

This shows that f ◦ g = z1..m ∈ GVAL. Furthermore,∥∥(ȳ(x),h(x))
∥∥6max(

∥∥ȳ(x)
∥∥ ,

∥∥y(g (x))
∥∥)

6max(sp(‖x‖),sp(
∥∥g (x)

∥∥))

6max(sp(‖x‖),sp(sp(‖x‖))).

�
Our main result is that the solution to an ODE whose right hand-side is gener-

able, and possibly depends on an external and C 1 control, may be rewritten as a
GPAC. A corollary of this result is that the solution to a generable ODE is generable.

Proposition 13.1 (Generable ODE rewriting) Let d ,n ∈N, I ⊆ Rn , X ⊆ Rd , sp :
R+ →R+ and ( f : I ×X →Rn) ∈ GVALK[sp]. Define sp= max(id,sp). Then there
exists m ∈ N, (g : I × X → Rm) ∈ GVALK[sp] and p ∈Km[Rm ×Rd ] such that for
any interval J , t0 ∈K∩ J , y0 ∈Kn ∩ J , y ∈C 1(J , I ) and x ∈C 1(J , X ), if y satisfies:{

y(t0)= y0

y ′(t )= f (y(t ), x(t ))
∀t ∈ J

then there exists z ∈C 1(J ,Rm) such that:{
z(t0)= g (y0, x(t0))
z ′(t )= p(z(t ), x ′(t ))

{
y(t )= z1..d (t )

‖z(t )‖6 sp(max(
∥∥y(t )

∥∥ ,‖x(t )‖))
∀t ∈ J

Proof: Apply Definition 13.3 to f get m ∈ N, p ∈ Mm,n+d (K) [Rm], f0 ∈ dom f ∩
Kd , w0 ∈Km and w : dom f → Rm such that w( f0) = w0, Jw(v) = p(w(v)), ‖w(v)‖ 6
sp(‖v‖) and w1..n(v) = f (v) for all v ∈ dom f . Define u(t ) = w(y(t ), x(t )), then:

u′(t ) = Jw (y(t ), x(t ))(y ′(t ), x ′(t ))

= p(w(y(t ), x(t )))( f (y(t ), x(t )), x ′(t ))

= p(u(t ))(u1..n(t ), x ′(t ))

= q(u(t ), x ′(t ))

where q ∈Km[Rm+d ] and u(t0) = w(y(t0)) = w(y0, x(t0)). Note that w itself is a gen-
erable function and more precisely w ∈ GVALK[poly] by definition. Finally, note that
y ′(t ) = u1..d (t ) so that we get for all t ∈ J :{

y(t0)= y0

y ′(t )= u1..d (t )

{
u(t0)= w(y0, x(t0))
u′(t )= q(u(t ), x ′(t ))
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Define z(t ) = (y(t ),u(t )), then z(t0) = (y0, w(y0, x(t0))) = g (y0, x(t0)) where y0 ∈ Kn

and w ∈ GVALK[sp] so g ∈ GVALK[sp]. And clearly z ′(t ) = r (z(t ), x ′(t )) where r ∈
Kn+m[Rn+m]. Finally, ‖z(t )‖ = max(

∥∥y(t )
∥∥ ,

∥∥w(y(t ), x(t ))
∥∥)6max(

∥∥y(t )
∥∥ ,sp(max(

∥∥y(t )
∥∥ ,‖x(t )‖))6

sp(max(
∥∥y(t )

∥∥ ,‖x(t )‖)). �

A simplified version of this lemma shows that generable functions are closed
under ODE solving.

Corollary 13.1 (Generable functions are closed under ODE) Let d ∈ N, J ⊆ R
an interval, sp,sp : R+ → R+, f :⊆ Rd → Rd in GVAL[sp], t0 ∈ K∩ J and y0 ∈
Kd ∩dom f . Assume there exists y : J → dom f satisfying for all t ∈ J :{

y(t0)= y0

y ′(t )= f (y(t ))

∥∥y(t )
∥∥6 sp(t )

Then y ∈ GVAL[max(sp,sp◦sp)] and is unique.

Remark 13.9 (Polynomially bounded generable functions) In light of the sta-
bility properties above, the class of polynomially bounded generable functions,

GVAL[poly] =
∞⋃

k=1
GVAL[α 7→ kαk ]

is particularly interesting because it is stable by operations: addition, multi-
plication, composition and ODE solving (provided the solution is polynomially
bounded). Notice that GVAL[poly] is not simply the intersection of GVAL with
the set of functions bounded by a polynomial, as shown in Example 13.9.

Our last result is simple but very useful. Generable functions are continuous and
continuously differentiable, so locally Lipschitz continuous. We can give a precise
expression for the modulus of continuity in the case where the domain of definition
is simple enough.

Proposition 13.2 (Modulus of continuity) Let sp :R+ →R+, f ∈ GVAL[sp]. There
exists q ∈K[R] such that for any x1, x2 ∈ dom f , if [x1, x2] ⊆ dom f then

∥∥ f (x1)− f (x2)
∥∥6

‖x1 −x2‖ q(sp(max(‖x1‖ ,‖x2‖))). In particular, if dom f is convex then f has a
polynomial modulus of continuity.

Proof: Apply Definition 13.3 to get d ,`,n, p, x0, y0 and y . Let k = deg(p). Recall
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that for a matrix, the subordinate norm is given by |||M ||| = maxi
∑

j |Mi j |. Then:

∥∥ f (x1)− f (x2)
∥∥ =

∥∥∥∥∫ x2

x1

Jy1..` (x)d x

∥∥∥∥ =
∥∥∥∥∫ 1

0
Jy1..` ((1−α)x1 +αx2)(x2 −x1)dα

∥∥∥∥
6

∫ 1

0
|||Jy1..` ((1−α)x1 +αx2)||| · ‖x2 −x1‖dα

6 ‖x2 −x1‖
∫ 1

0
max

i∈J1,`K

d∑
j=1

|pi j (y((1−α)x1 +αx2))|dα

6 ‖x2 −x1‖
∫ 1

0
max

i∈J1,`K

d∑
j=1

Σp max(1,
∥∥y((1−α)x1 +αx2)

∥∥)k )dα

6 ‖x2 −x1‖
∫ 1

0
max

i∈J1,`K
dΣp max(1,sp(‖(1−α)x1 +αx2‖))k dα

6 ‖x2 −x1‖
∫ 1

0
dΣp max(1,sp(max(‖x1‖ ,‖x2‖)))k dα

6 ‖x2 −x1‖dΣp max(1,sp(max(‖x1‖ ,‖x2‖)))k

�

13.4 Analyticity of generable functions

It is a well-known result that the solution of a PIVP y ′ = p(y) (and more generally,
of an analytic differential equation y ′ = f (y) where f is analytic) is real analytic on
its domain of definition. In the previous section we defined a generalized notion of
generable function satisfying Jy = p(y) which analyticity is less immediate. In this
section we go through the proof in detail, which of course subsumes the result for
PIVP.

We recall a well-known characterization of analytic functions. It is indeed much
easier to show that a function is infinitely differentiable and of controlled growth,
rather than showing the convergence of the Taylor series.

Proposition 13.3 (Characterization of analytic functions) Let f ∈ C∞(U ) for
some open subset U of Rm . Then f is analytic on U if and only if, for each u ∈U ,
there are an open ball V , with u ∈ V ⊆ U , and constants C > 0 and R > 0 such
that the derivatives of f satisfy

|∂α f (x)|6C
α!

R |α| x ∈V ,α ∈Nm

Proof:See proposition 2.2.10 of [?]. �
In order to use this result, we show that the derivatives of generable functions at

a point x do not grow faster than the described bound. We use a generalization of
Faà di Bruno formula for the derivatives of a composition.
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Theorem 13.2 (Generalised Faà di Bruno’s formula) Let f : X ⊆ Rd → Y ⊆ Rn

and g : Y → R where X ,Y are open sets and f , g are sufficiently smooth func-
tionsa. Let α ∈Nd and x ∈ X , then

∂α(g ◦ f )(x) =α!
∑

(s,β,λ)∈Dα

∂λg ( f (x))
s∏

k=1

1

λk !

(
1

βk !
∂βk

f (x)

)λk

where ∂λ means ∂∑s
u=1λu and where Dα is the list of decompositions of α. A

multi-index α ∈ Nd is decomposed into s ∈ N parts β1, . . . ,βs ∈ Nd with multi-
plicies λ1, . . . ,λs ∈Nn respectively if |λi | > 0 for all i , all the βi are distincts from
each other and from 0, andα= |λ1|β1+·· ·+|λs |βs . Note that β and λ are multi-
indices of multi-indices: β ∈ (

Nd
)s

and λ ∈ (
Nd

)s
.

aMore precisely, for the formula to hold for α, all the derivatives which appear in the right-hand
side must exist and be continuous

Proof: See [?] or [?]. �
We have seen that one-dimensional GPAC generable functions are analytic. We

now extend this result to the multidimensional case.

Proposition 13.4 (Generable implies analytic) If f ∈ GVAL then f is real-analytic
on dom f .

Proof: Let sp : R→ R+, p ∈ Mn,d [Rn] and y : Rn → Rn from Definition 13.3. It is
sufficient to prove that y is analytic on D = dom f to get the result. Let i ∈ J1,nK, and
j ∈ J1,dK, since Jy = p(y) then ∂ j yi (x) = pi j (y(x)) and pi j is a polynomial vector
so clearly C∞. By Remark 13.5, y is also C∞ so we can apply Theorem 13.2 for any
x ∈ D , α ∈Nd and get

∂α(∂ j yi )(x) = ∂α(pi j ◦ y)(x) =α!
∑

(s,β,λ)∈Dα

∂λpi j (y(x))
s∏

k=1

1

λk !

(
1

βk !
∂βk

y(x)

)λk

Define Bα(x) = 1
α!

∥∥∂αy(x)
∥∥, and denote by α+ j the multi-index λ such that λ j =

α j + 1 and λk = αk for k 6= j . Define C (y(x)) = maxi , j ,λ(|∂λpi j (y(x))|) and note
that it is well-defined because ∂λpi j is zero whenever |λ| > deg(pi j ). Define D′

α =
{(s,β,λ) ∈Dα | |λ|6 deg(p)}. The equations becomes:

|∂α(∂ j yi )(x)|6α!
∑

(s,β,λ)∈Dα

|∂λpi j (y(x))|
s∏

k=1

1

λk !

∣∣∣∣ 1

βk !
∂βk

y(x)

∣∣∣∣λk

6α!C (y(x))
∑

(s,β,λ)∈D′
α

s∏
k=1

1

λk !
Bβk

(x)|λk |.

Note that the right-hand side of the expression does not depend on i . We are going

to show by induction that Bα(x)6
(

C (y(x))
R

)|α|
for some choice of R. The initialization
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for |α| = 1 is trivial because α! = 1 and Bα(x) = ∥∥∂αy(x)
∥∥ 6C (y(x)) so we only need

R 6 1. The induction step is as follows:

Bα+ j (x)6C (y(x))
∑

(s,β,λ)∈D′
α

s∏
k=1

1

λk !
Bβk

(x)|λk |

6C (y(x))
∑

(s,β,λ)∈D′
α

s∏
k=1

1

λk !

(
C (y(x))

R

)|βk ||λk |

6C (y(x))
∑

(s,β,λ)∈D′
α

1

λ!

(
C (y(x))

R

)∑s
u=1 |βk ||λk |

6C (y(x))

(
C (y(x))

R

)|α| ∑
(s,β,λ)∈D′

α

1

λ!

6C (y(x))

(
C (y(x))

R

)|α|
#D′

α.

Evaluating the exact cardinal of D′
α is complicated but we only need a good

enough bound to get on with it. First notice that for any (s,β,λ) ∈ D′
α, we have

|λ| 6 deg(p) by definition, and since each |λi | > 0, necessarily s 6 deg(p). This
means that there is a finite number, denote it by A, of (s,λ) in D′

α. For a given λ,
we must have α = ∑s

i=1 |λi |βi which implies that |βi j | 6 |α| and so there at most

(1+|α|)ns choices for β, and since s 6 deg(p), #D′
α 6 A(1+|α|)b where b and A are

constants. Choose R 6 1 such that R |α| > A(1+ |α|)b for all α to get the claimed
bound on Bα(x).

To conclude with Proposition 13.3, consider x ∈ D . Let V be an open ball of D
containing x. Let M = supu∈V C (y(x)), it is finite because C is bounded by a polyno-
mial,

∥∥y(x)
∥∥6 sp(x) and V is an open ball (thus included in a compact set). Finally

we get: ∥∥∂αy(x)
∥∥6α!

(
M

R

)|α|
�

13.5 Generable zoo

In this section, we introduce a number of generable functions. Since a GPAC (PIVP)
only generates analytic functions, it cannot generate discontinuous functions like
the sign. However these functions can be arbitrarily approximated by GPACs, as
we show in this section, where we present a “zoo” of such approximating functions.
This zoo illustrates the wide range of generable functions. Some of the functions se-
lected in this “zoo” were chosen to approximate noncontinuous functions tradition-
ally used in computer programs like the absolute value or the sign function. Other
functions were selected due to their usefulness for potential applications, like sim-
ulating Turing machines with a GPAC, using a bounded amount of resources, which
we intend to explore in an incoming paper.
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We note that the approximation of a discontinuous functions by a GPAC gener-
able function is uniform, since we provide the GPAC with a parameter which sets
the maximum allowed error of the approximation. The use of different values of the
parameter by the same GPAC allows to dynamically change the quality of the ap-
proximation, without making any other change on the GPAC. The table below gives
a list of the functions and their purpose.

We use the term “dead zone” to refer to interval(s) where the generable function
does not compute the expected function (but still has controlled behavior). We use
the term “high” to mean that the function is close to x (an input) within e−µ where
µ is another input. Conversely, the use the term “low” to mean that it is close to
0 within e−µ. And “X” means something in between. Finally “integral” means that
function is of the form φx and the integral of φ (on some interval) is between 1 and
a constant.

We conclude this section by giving a large class of functions that can be uni-
formly approximated by (polynomially bounded) generable functions, except on a
small number of dead zones (typically at discontinuity points) that can be made ar-
bitrary small, see Section 13.6.

Generable Zoo
Name Notation Comment

Sign sg(x,µ,λ) Compute the sign of x with error e−µ and dead
zone in [−λ−1,λ−1]. See 13.4

Floor ip1(x,µ,λ) Compute int1(x) with error e−µ and dead zone in
[−λ−1,λ−1]. See 13.5

Abs abs(x,µ,λ) Compute |x| with error with error e−µ and dead
zone in [−λ−1,λ−1]. See 13.7

Max mx(x, y,µ,λ) Compute max(x, y) and ‖x‖ with error e−µ and
dead zone for x − y ∈ [−λ−1,λ−1]. See 13.8

Norm normδ(x,µ,λ) Compute ‖x‖ with error δ. See 13.9
Round rnd(x,µ,λ) Compute bxe with error e−µ and dead zones in

[n − 1
2 +λ−1,n + 1

2 −λ−1] for all n ∈Z. See 13.6
Low-X-High lxh[a,b](t ,µ, x) Compute 0 when t ∈] −∞, a] and x when t ∈

[b,∞[ with error e−µ and a dead zone in [a,b].
See 13.10

High-X-Low hxl[a,b](t ,µ, x) Compute x when t ∈] −∞, a] and 0 when t ∈
[b,∞[ with error e−µ and a dead zone in [a,b].
See 13.10

13.5.1 Sign and rounding

We begin with a small result on the hyperbolic tangent function, which will be used
to build several generable functions of interest.

Lemma 13.3 (Bounds on tanh) 1− sgn(t ) tanh(t )6 e−|t | for all t ∈R.
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Proof: The case of t = 0 is trivial. Assume that t > 0 and observe that 1−tanh(t ) =
1− 1−e−2t

1+e−2t = 2e−2t

1+e−2t = e−t 2e−t

1+e−2t . Define f (t ) = 2e−t

1+e−2t and check that f ′(t ) = 2e−t (e−2t−1)
(1+e−2t )2 6

0 for t > 0. Thus f is a non-increasing function and f (0) = 1 which concludes.
If t < 0 then note that 1− sgn(t ) tanh(t ) = 1− sgn(−t ) tanh(−t ) so we can apply

the result to −t > 0 to conclude. �
The simplest generable function of interest uses the hyperbolic tangent to ap-

proximate the sign function. On top of the sign function, we can build an approxi-
mation of the floor function. See Figure 13.5 for a graphical representation.

Definition 13.4 (Sign function) For any x,µ,λ ∈R define

sg(x,µ,λ) = tanh(xµλ)

Lemma 13.4 (Sign) sg ∈ GVAL[poly] and for any x ∈R and λ,µ> 0,

|sgn(x)− sg(x,µ,λ)|6 e−|x|λµ6 1

In particular, sg is non-decreasing in x and if |x|>λ−1 then

|sgn(x)− sg(x,µ,λ)|6 e−µ

Proof: Note that sg = tanh◦ f where f (x,µ,λ) = xµλ. We saw in Example 13.2
that tanh ∈ GVAL[t 7→ 1]. By Lemma 13.2, f ∈ GVAL[α 7→ max(1,α3)]. Thus sg ∈
GVAL[α 7→ max(1,α3)].

Use Lemma 13.3 and the fact that tanh is an odd function to get the first bound.
The second bound derives easily from the first. Finally, sg is a non-decreasing func-
tion because tanh is an increasing function. �

Definition 13.5 (Floor function) For any x,µ,λ ∈R define

ip1(x,µ,λ) = 1+ sg(x −1,µ,λ)

2

Lemma 13.5 (Floor) ip1 ∈ GVAL[poly] and for any x ∈R and µ,λ> 0,

| int1(x)− ip1(x,µ,λ)|6 e−|x−1|λµ

2
6

1

2

where int1(x) = 0 if x < 1 and 1 if x > 1. In particular ip1 is non-decreasing in x
and if |1−x|>λ−1 then

| int1(x)− ip1(x,µ,λ)| < e−µ

We will now see how to build a very precise approximation of the rounding func-
tion. Of course rounding is not a continuous operation so we need a small deadzone
around the discontinuity points.
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x

sg(x,1,4) ip1(x,20,100)

Figure 13.5: Graph of sg and ip1.

Definition 13.6 (Round function) For any x ∈R, λ> 2 and µ> 0, define

rnd(x,µ,λ) = x − 1

π
arctan(cltan(πx,µ,λ))

cltan(θ,µ,λ) = sin(θ)√
nz(cos2θ,µ+16λ3,4λ2)

sg(cosθ,µ+3λ,2λ)

nz(x,µ,λ) = x + 2

λ
ip1

(
1−x + 3

4λ
,µ+1,4λ

)

Lemma 13.6 (Round) For any n ∈Z, λ> 2, µ> 0, we have |rnd(x,µ,λ)−n|6 1
2

for all x ∈ [
n − 1

2 ,n + 1
2

]
and |rnd(x,µ,λ)−n|6 e−µ for all x ∈ [

n − 1
2 + 1

λ ,n + 1
2 − 1

λ

]
.

Furthermore rnd ∈ GVAL[poly].

Proof: Let’s start with the intuition first: consider f (x) = x− 1
π arctan(tan(πx)). It

is an exact rounding function: if x = n +δ with n ∈N and δ ∈]−1
2 , 1

2 [ then tan(πx) =
tan(πδ) and since δπ ∈]−π2 , π2 [, f (x) = x −δ = n. The problem is that it is undefined
on all points of the form n + 1

2 because of the tangent function.
The idea is to replace tan(πx) by some “clamped” tangent cltan which will be like

tan(πx) around integer points and stay bounded when close to x = n + 1
2 instead of

exploding. To do so, we use the fact that tanθ = sinθ
cosθ but this formula is problematic

because we cannot prevent the cosine from being zero, without loosing the sign of
the expression (the cosine could never change sign). Thus the idea is to remove the
sign from the cosine, and restore it, so that tanθ = sgn(cosθ) sinθ

|cosθ| . And now we

can replace |cos(θ)| by
√

nz(cos2θ), where nz(x) is mostly x except near 0 where is
lower-bounded by some small constant (so it is never zero). The sign of cosine can
be computed using our approximate sign function sg.

Formally, we begin with nz and show that:

• nz ∈ GVAL[poly]
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• nz is an increasing function of x

• For x > 1
λ , |nz(x,µ,λ)−x|6 e−µ

• For x > 0, nz(x,µ,λ)> 1
2λ

The first point is a consequence of ip1 ∈ GVAL[poly] from Corollary 13.5. The second
point comes from Corollary 13.5: if x > 1

λ , then 1−x+ 3
4λ 6 1− 1

4λ , thus |nz(x,µ,λ)−
x|6 2

λe−µ−1 6 e−µ since λ> 2. To show the last point, first apply Corollary 13.5: if

x 6 1
2λ , then 1−x+ 3

4λ > 1+ 1
4λ , thus |nz(x,µ,λ)−x− 2

λ |6 2
λe−µ−1 Thus nz(x,µ,λ)>

2
λ (1−e−µ−1)+x > 1

λ since 1−e−µ−16 1
2 and x > 0. And for x > 1

2λ , by Corollary 13.5

we get that nz(x,µ,λ)> x > 1
2λ which shows the last point.

Then we show that:

• cltan ∈ GVAL[poly], is π-periodic and is an odd function.

• For θ ∈ [−π
2 + 1

λ , π2 − 1
λ

]
, |cltan(θ,µ,λ)− tan(θ)|6 e−µ

First apply the above results to get that nz(cos2θ,µ+ 16λ3,4λ2) > 1
8λ2 . It follows

that cltan(θ,µ,λ) 6 1p
nz(cos2 θ,µ+16λ3,4λ2)

6
p

8λ, which is a polynomial in λ. Since

sin,cos,sg,nz ∈ GVAL[poly], it follows that clan ∈ GVAL[poly]. The periodicity comes
from the properties of sine and cosine, and the fact that sg is an odd function. It is an
odd function for similar reasons. To show the second point, since it is periodic and
odd, we can assume that θ ∈ [

0, π2 − 1
λ

]
. For such a θ, we have that π

2 −θ > 1
λ , thus

cos(θ)> sin(π2 −θ)> 1
2λ (use that sin(u)> u

2 for 06 u 6 π
2 ). By Lemma 13.4 we get

that |sg(cosθ,µ+3λ,2λ)−1|6 e−µ−3λ. Also cos2θ > 1
4λ2 thus by the above results

we get that |nz(cos2θ,µ+16λ3,4λ2)− cos2θ|6 e−µ. Using the fact that |
p

a−pbp
a

|6
|a −b| for any a > 0 and b ∈ R, we get that

∣∣∣∣pnz(cos2 θ,µ,4λ2)−|cosθ|p
nz(cos2 θ,µ+16λ3,2λ)

∣∣∣∣ 6 |nz(cos2θ,µ+
16λ3,4λ2)− cos2θ|6p

8λe−µ−16λ3
. Putting everything together, using that cosθ >
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1
2λ and nz(cos2θ,µ+16λ3,2λ)> 8λ2, we get that

|cltan(θ,µ,λ)− tanθ| =
∣∣∣∣∣ sin(θ)sg(cosθ,µ+3λ,2λ)√

nz(cos2θ,µ+16λ3,4λ2)
− sinθ

cosθ

∣∣∣∣∣
6

∣∣∣∣∣sin(θ)(sg(cosθ,µ+3λ,2λ)− sgn(cosθ)√
nz(cos2θ,µ+16λ3,4λ2)

∣∣∣∣∣
+

∣∣∣∣∣ sin(θ)sgn(cosθ)√
nz(cos2θ,µ+16λ3,4λ2)

− sinθ

cosθ

∣∣∣∣∣
6

|sg(cosθ,µ+3λ,2λ)− sgn(cosθ)|√
nz(cos2θ,µ+16λ3,4λ2)

+
∣∣∣∣∣ 1√

nz(cos2θ,µ+16λ3,4λ2)
− 1

|cosθ|

∣∣∣∣∣
6

p
8λe−µ−3λ+ |

√
nz(cos2θ,µ+16λ3,4λ2)−|cosθ||

|cosθ‖
√

nz(cos2θ,µ+16λ3,4λ2)

6
p

8λe−µ−3λ+2λ ·p8λ ·p8λe−µ−16λ3

6 3λe−µ−3λ+16λ3e−µ−16λ3

6 e−µ

because xe−x 6 1
2 for any x > 0.

Let n ∈N and x = n+δ ∈ [n− 1
2 ,n+ 1

2 ]. Since cltan is π-periodic, rnd(x,µ,λ) = n+
δ− 1

π arctan(cltan(πδ,µ,λ)). Furthermoreπδ ∈ [−π
2 , π2 ] so cos(πδ)> 0 and sgn(sin(πδ)) =

sgn(δ). Consequently, sg(cos(πδ),µ+3λ,2λ) ∈ [0,1] by definition of sg and
√

nz(cos2(πδ),µ+16λ3,4λ2) >√
cos2(πδ) because ip1 > 0. Consequently, we get that |cltan(πδ,µ,λ)|6 |sin(πδ)|

cos(πδ) and

sgn(cltan(πδ,µ,λ)) = sgn(δ). Finally, we can write 1
π arctan(cltan(πδ,µ,λ)) = α with

|α|6 | 1
π arctan(tan(πδ))|6 |δ| and sgn(α) = sgn(δ) which shows that |rnd(x,µ,λ)−

n|6 δ6 1
2 .

Finally we can show the result about rnd: since cltan and tan are in GVAL[poly],
then rnd ∈ GVAL[poly]. Now consider x ∈ [

n − 1
2 + 1

λ ,n + 1
2 − 1

λ

]
, and let θ = πx −

πn. Then θ ∈ [−π
2 + π

λ , π2 − π
λ

] ⊆ [−π
2 + 1

λ , π2 − 1
λ

]
, and since cltan is periodic, then

rnd(x,µ,λ) = n + θ
π − 1

π arctan(cltan(θ,µ,λ). Finally, using the results about cltan

yields: |rnd(x,µ,λ)−n| = 1
π |θ−arctan(cltan(θ,µ,λ)| = 1

π |arctan(tan(θ))−arctan(cltan(θ,µ,λ)|6
1
π | tan(θ)−cltan(θ,µ,λ)|6 e−µ

π 6 e−µ since arctan is a 1-Lipschitz function. �

13.5.2 Absolute value, maximum and norm

A very common operation is to compute the absolute value of a number. Of course
this operation is not generable because it is not even differentiable. However, a good
enough approximation can be built. In particular, this approximation has several
key features: it is non-negative and it is an over-approximation. We can then use it
to build an approximation of the max function and the infinite norm.
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Definition 13.7 (Absolute value function) For any x ∈R and µ,λ> 0 define:

abs(x,µ,λ) = 1

1+λµ ln(2cosh((1+λµ)x))

Lemma 13.7 (Absolute value) For any x ∈R and µ,λ> 0 we have

|x|6 abs(x,µ,λ)6 |x|+min

(
1

1+λµ ,e−|x|λµ
)

.

So in particular, if |x| > λ−1 then |x| 6 abs(x,µ,λ) 6 |x| + e−µ. Furthermore
abs ∈ GVAL[poly] and is an even function.

Proof: Since cosh is an even function, we immediately get that abs is even. Let
x > 0 andµ,λ> 0. Since 2cosh(u)> eu , it trivially follows that abs(x,µ,λ)> 1

1+λµ (1+
λµ)x > x. Also ln(2cosh(u)) = ln(eu(1+ e−2u)) = u + ln(1+ e−2u)6 u + e−2u so it fol-
lows that abs(x,µ,λ)6 x + 1

1+λµe−2(1+λµ)x 6 x + e−xλµ. Furthermore, ∂abs
∂x (x,µ,λ) =

tanh((1+λµ)x) which shows that x 7→ abs(x,µ,λ)−x is decreasing and positive over
[0,+∞[ and thus has its maximum abs(0,µ,λ) = 1

1+µλ attained at 0. Since
(

ln(2cosh(u))
)′ =

tanh(u), tanh ∈ GVAL[poly] and ln(2cosh(u)) is bounded by |u|+1, we get that
(
u 7→

ln(2cosh(u))
) ∈ GVAL[poly] by applying Corollary 13.1. It follows that abs ∈ GVAL[poly]

using the usual lemmas. �

Definition 13.8 (Max/Min function) For any x, y ∈R and µ,λ> 0 define:

mx(x, y,µ,λ) = y +x +abs(y −x,µ,λ)

2
mn(x, y,µ,λ) = x + y −mx(x, y,µ,λ).

For any x ∈Rn and δ ∈]0,1] define:

mxδ(x) = mx(x1,mx(. . . ,mx(xn−1, xn ,1, (nδ)−1) . . .)).

Lemma 13.8 (Max/Min function) For any x, y ∈R and λ,µ> 0 we have:

max(x, y)6mx(x, y,µ,λ)6max(x, y)+min

(
1

1+λµ ,e−|x−y |λµ
)

and

min(x, y)−min

(
1

1+λµ ,e−|x−y |λµ
)
6mn(x, y,µ,λ)6min(x, y)

So in particular, if |x − y | > λ−1 then max(x, y) 6 mx(x, y,µ,λ) 6 max(x, y)+
e−µ and min(x, y) − e−µ 6 mn(x, y,µ,λ) 6 min(x, y). Furthermore mx,mn ∈
GVAL[poly]. For any x ∈Rn and δ ∈]0,1] we have:

max(x1, . . . , xn)6mxδ(x)6max(x1, . . . , xn)+δ
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x

Figure 13.6: Graph of lxh[1,3] and hxl[1,2]

Furthermore mxδ ∈ GVAL[poly].

Proof: By Lemma 13.7, |y − x|6 abs(y − x,µ,λ)6 |y − x| +min
(

1
1+λµ ,e−|x−y |λµ

)
and the result follows because max(x, y) = y+x+|y−x|

2 . The result on mn follows the
one on mx. Finally mx,mn ∈ GVAL[poly] from Lemma 13.2.

Observe that max(x)6mxδ(x) is trivial by definition. The other inequality is a
simple calculus based on max(x, y,µ,λ)6max(x, y)+ 1

1+µλ :

mxδ(x)6max(x)+n
1

1+ (nδ)−1 6max(x)+δ.

Note that strictly speaking, for mxδ ∈ GVALK[poly] we need that δ ∈ K or use a
smaller δ′ inKwhich is always possible. �

Definition 13.9 (Norm function) For any x ∈Rn and δ ∈]0,1] define:

norm∞,δ(x) = mxδ/2(absδ/2(x1), . . . ,absδ/2(xn))

where absδ(x) = mxδ(x,−x).

Lemma 13.9 (Norm function) For any x ∈Rn and δ ∈]0,1] we have:

‖x‖6 norm∞,δ(x)6 ‖x‖ +δ

Furthermore norm∞,δ ∈ GVAL[poly].

Proof: Apply Lemma 13.7 and Lemma 13.8. �

13.5.3 Switching functions

An important construct in digital computation is the “if ... then ... else ...” construct,
which allows us to switch between two different behaviours. Again, this cannot be
done exactly with a GPAC since GPACs cannot generate discrete functions and we
need something which acts like a select function, which can pick between two values
depending on how a third value compares to a threshold. The problem is that this
operation is not continuous, and thus not generable. But such a select function can
be approximated by a GPAC. As a good first step, we build so-called “low-X-high” and
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“high-X-low” functions which act as a switch between 0 (low) and a value (high).
Around the threshold will be an small uncertainty zone (X) where the exact value
cannot be predicted. See Figure 13.6 for a graphical representation.

Definition 13.10 (“low-X-high” and “high-X-low”) Let I = [a,b] with b > a, t ∈
R, µ ∈R, x ∈R, ν=µ+ ln(1+x2), δ= b−a

2 and define:

lxhI (t ,µ, x) = ip1

(
t − a +b

2
+1,ν,

1

δ

)
x

hxlI (t ,µ, x) = ip1

(
a +b

2
− t +1,ν,

1

δ

)
x

Lemma 13.10 (“low-X-high” and “high-X-low”) Let I = [a,b],µ ∈R+, then∀t , x ∈
R:

• ∃φ1,φ2 such that lxhI (t ,µ, x) =φ1(t ,µ, x)x and hxlI (t ,µ, x) =φ2(t ,µ, x)x

• if t 6 a, | lxhI (t ,µ, x)|6 e−µ and |x −hxlI (t ,µ, x)|6 e−µ

• if t > b, |x − lxhI (t ,µ, x)|6 e−µ and |hxlI (t ,µ, x)|6 e−µ

• in all cases, | lxhI (t ,µ, x)|6 |x| and |hxlI (t ,µ, x)|6 |x|
Furthermore, lxhI ,hxlI ∈ GVAL[poly].

Proof: By symmetry, we only prove it for lxh. This is a direct consequence of

Corollary 13.5 and the fact that |x|6 e ln(1+x2). Indeed if t 6 a then t − a+b
2 +16 1−δ

thus | lxhI (t ,ν, x)|6 |x|e−ν 6 e−µ. Similarly if t > b then t − a+b
2 +1> 1+δ and we

get a similar result. Apply Lemma 13.2 multiple times to see that they are belong to
GVAL[poly]. �

13.6 GPAC approximation

The examples of the previous section all share an interesting common pattern, which
we formalise with the definition below. In this section,K can be any generable field2.

Definition 13.11 (GPAC approximation) Let I be an open and connected sub-
set of Rm , Γ ⊆ I a subset of I of exceptions and f : I → Rm . We say that f is
GPAC-approximable over I but Γ if there exists g ∈ GVALK[poly] such that for
any x ∈ I and µ,λ> 0 we have∥∥ f (x)− g (x,µ,λ)

∥∥6 e−µ if d(x,Γ)>λ−1,

2See Section 13.7 for more details.
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where d(x,Γ) denotes the distance between x and Γ (for the infinite norm).

The set Γ of points where the approximation fails will typically be discrete, finite
or even empty. If Γ is empty, we do not mention it and say f is GPAC-approximable.
Intuively, g provides an effective, uniform and arbitrary good approximation of f ,
except on a set that can be made “arbitrary small”. We cannot quantify how small
the set of exception is in general, since the definition allows for pathological cases
such as Γ = I or Γ = I ∩Qm . However, in case where Γ is discrete, a condition met
by all examples in this paper, for any compact set K , the measure of exception set
{d(x,Γ)6λ−1}∩K converges to 0 as λ tends to infinity.

Note that our notion of approximation is not really related to classical approx-
imation theory, by a sequence of functions for example. Indeed, in the definition,
the same function g is used for all µ and λ, which creates a lot of constraints since
g is generable, i.e. it satisfies a polynomial partial differential equation. Informally,
one can think of g as a “template” with parameters µ and λ that we can tweak to get
closer and closer to f but the shape itself of the template is fixed once and for all.

It appears that there is an interesting trade-off between the bound sp on the
norm of g (i.e. g ∈ GVAL[sp]) and the quality of the approximation. Indeed, if sp is
chosen to be a polynomial, we can seemingly achieve an exponential error bound
(e−µ) but only an inverse distance fromΓ (1/λ) for interesting functions. For simplic-
ity, we only consider polynomially bounded generable functions is this definition.

Note that the definition does not mandate that f be continuous and indeed it
needs not be. For example, Lemma 13.6 proves that the rounding function is GPAC-
approximable over R but 1

2 +Z. More generally, the discontinuity points will always
belong to Γ.

In this section, we give several examples of classes of functions that can be ap-
proximated as described above.

Lemma 13.11 (Basic approximable functions) Any generable function is approx-
imable on its domain of definition. If f and g are GPAC-approximable over X
but Γ f and Γg respectively, then f ± g and f g are GPAC-approximable over X
but Γ f ∪Γg .

Proof: Any generable function trivially satisfies the definition using itself as an
approximation. If f is approximated by F and g by G then for any µ,λ> 0 and x ∈ X
such that d(x,Γ f ∪Γg )>λ−1:∥∥ f (x)+ g (x)−F (x,µ+1,λ)−G(x,µ+1,λ)

∥∥6 2e−µ−16 e−µ.

Thus (x,µ,λ) 7→ F (x,µ+1,λ)+G(x,µ+1,λ) approximate f + g over X but Γ f ∪Γg .
The case of the multiplication is similar but slightly more involved. Define for

any x ∈ X and µ,λ> 0:
H(x,µ,λ) =

F
(
x,µ+2+norm∞,1(G(x,1,λ)),λ

)︸ ︷︷ ︸
:= f̃ (x,µ,λ)

G
(
x,µ+3+norm∞,1(F (x,1,λ)),λ

)︸ ︷︷ ︸
:=g̃ (x,µ,λ)

.
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It will be useful to recall that ‖x‖6 norm∞,1(x) thanks to Lemma 13.9. Let µ,λ> 0
and x ∈ X such that d(x,Γ f ∪Γg )>λ−1. Note that since we have

∥∥ f (x)−F (x,1,λ)
∥∥6

e−1 then ‖F (x,1,λ)‖> ∥∥ f (x)
∥∥−1. Similarly,

∥∥g̃ (x,µ,λ)−G(x,1,λ)
∥∥6 e−1 +e−µ thus

‖G(x,1,λ)‖ > ∥∥g̃ (x,µ,λ)
∥∥−2. Finally check that x 7→ xe−x is globally bounded by 1.

Thus we have:

∥∥ f (x)g (x)−H(x,µ,λ)
∥∥6 ∥∥ f (x)

∥∥∥∥g (x)− g̃ (x,µ,λ)
∥∥

+∥∥ f (x)− f̃ (x,µ,λ)
∥∥∥∥g̃ (x,µ,λ)

∥∥
6

∥∥ f (x)
∥∥ e−µ−2−norm∞,1(F (x,1,λ))

+e−µ−3−norm∞,1(G(x,1,λ)) ∥∥g̃ (x,µ,λ)
∥∥

6
∥∥ f (x)

∥∥ e−µ−1−‖ f (x)‖ +e−µ−1−‖g̃ (x,µ,λ)‖ ∥∥g̃ (x,µ,λ)
∥∥

6 2e−µ−16 e−µ.

This shows that H approximates f g over x but Γ f ∪Γg . The fact that H ∈ GVAL[poly]
follows from the hypothesis on F and G and Lemma 13.2. �

Theorem 13.3 (Piecewise approximability) Let −∞ 6 a0 < a1 < . . . < ak+1 6
+∞ and f :]a0, ak+1[→R. Assume that for each i ∈ {0, . . . ,k}, f is GPAC-approximable
over ]ai , ai+1[ but Γi . Further assume that all finite ai belong to K. Then f is
GPAC-approximable over ]a0, ak+1[ but {a1, . . . , ak }∪⋃k

i=0Γi .

Proof: Without loss of generality, we can assume that f is defined over R. Indeed
if f is only defined over [a,b], [a,+∞[ or ]−∞,b], we can add an extra infinite interval
over which f is constantly equal to 0. The resulting g for this extended f satisfies the
definition over the original domain of definition of f .

We now assume that a0 =−∞ and ak+1 =+∞. Let f̃i ∈ GVAL[poly] be the GPAC-
approximation of f over ]ai , ai+1[ but Γi , for i ∈ {0, . . . ,k}. There is a subtle issue at
this point: a priori f̃i is only defined over ]ai , ai+1[×]0,+∞[2. We will show that f̃i

can be assumed to be defined over R×]0,+∞[2 and we defer of proof of this fact to
end of this proof. Define for any x ∈R, µ> 0 and λ> 0:

g (x,µ,λ) = f̃0(x,ν,λ)+
k∑

i=1
lxh[−1,1]

(
(x −ai )λ,ν, f̃i (x,ν,λ)− f̃i−1(x,ν,λ)

)

where ν = µ+ k + 1. First note that g ∈ GVALK[poly] because it is a finite sum of
generable functions in GVAL[poly], and the endpoints of the intervals belong to K.
Define Γ= {a1, . . . , ak }∪⋃k

i=0Γi . Let µ,λ> 0 and x ∈ R be such that d(x,Γ)> λ−1. It
follows that ai+λ−16 x 6 ai+1−λ−1 for some i ∈ {0, . . . ,k}. Let j ∈ {0, . . . ,k} and apply
Lemma 13.10 to get that | lxh[−1,1]((x−a j )λ,ν, X )|6 e−ν if j > i +1 and | lxh[−1,1]((x−
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a j )λ,ν, X )−X |6 e−ν if j 6 i . It follows that:∣∣g (x,µ,λ)− f (x)
∣∣6 ∣∣g (x,µ,λ)− f̃i (x,ν,λ)

∣∣+e−ν

=
∣∣∣∣∣g (x,µ,λ)− f̃0(x,ν,λ)−

i∑
j=1

(
f̃i (x,ν,λ)− f̃i−1(x,ν,λ)

)∣∣∣∣∣
6

i∑
j=1

(
lxh[−1,1]

(
(x −ai )λ,ν, f̃i (x,ν,λ)− f̃i−1(x,ν,λ)

)
− (

f̃i (x,ν,λ)− f̃i−1(x,ν,λ)
))+e−ν

6 (k +1)e−ν6 e−µ.

This concludes the proof that f is approximate by g over R but Γ. It remains to
show that, indeed, each f̃i can be assumed to be defined over R. We show this in
full-generality for intervals.

Let f :]a,b[→ R and f̃ :]a,b[×]0,+∞[2 a GPAC-approximation of f . Let sp be a
polynomial such that f̃ ∈ GVAL[sp]. Apply Proposition 13.2 to f̃ to get a polynomial
q . Recall that q acts as a modulus of continuity:∣∣ f̃ (x,µ,λ)− f (y,µ,λ)

∣∣6 |x − y |q(sp(max(|x|, |y |,µ,λ)))

for any x, y ∈]a,b[ and µ,λ > 0. Let p ∈ K[R] be a nondecreasing polynomial such
that p(x)> q(sp(x)) for all x > 0. Define for any x ∈R and µ,λ> 0:

clamp(x,µ,λ) = mx(a +θ−1,mn(x,b −θ−1,µ+1,θ),µ+1,θ)

whereδ= b−a and θ = 2λ+(2δ)−1. Observe that clamp satisfies three key properties:

• clamp(x,µ,λ) ∈]a,b[ for all x ∈R andµ,λ> 0: indeed, by Lemma 13.8, clamp(x,µ,λ)>
a + θ−1 > a. On the other hand, clamp(x,µ,λ) 6 max(a + θ−1,mn(x,b,µ+
1,θ))+ 1

1+(1+µ)θ but mn(mn(x,b −θ−1,µ+ 1,θ)) 6 b −θ−1 so clamp(x,µ,λ) 6

max(a+θ−1,b−θ−1)+ 1
1+(1+µ)θ . Note that θ > (2δ)−1 so a+θ−1 < b−θ−1. Con-

sequently clamp(x,µ,λ)6 b −θ−1 + 1
1+(1+µ)θ < b.

• if a +λ−1 6 x 6 b −λ−1 then |clamp(x,µ,λ)− x| 6 e−µ: if a +λ−1 6 x then
x−(a+θ−1)−θ−1>λ−1−2θ−1> 0 so |clamp(x,µ,λ)−mn(x,b−θ−1,µ+1,θ)|6
e−µ−1. Similarly, x 6 b −λ−1 implies that x 6 (b − θ−1)− θ−1 so |mn(x,b −
θ−1,µ+1,θ)−x|6 e−µ−1. It follows that |clamp(x,µ,λ)−x|6 2e−µ−16 e−µ.

• clamp ∈ GVAL[poly]: use Lemma 13.8 and the usual arithmetic lemmas. Note
that it works because λ 7→ (2λ+ (2δ)−1)−1 belongs to GVAL[poly] for any fixed
δ.

We can now use clamp to make sure the argument of f̃ is always within the domain
of definition ]a,b[, and make sure that it is a good enough approximation using the
modulus of continuity. Define for any x ∈R and µ,λ> 0:

F̃ (x,µ,λ) = f̃ (clamp(x,µ+1+p(1+norm∞,1(x,µ,λ)),λ),µ+1,λ)
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Clearly F̃ ∈ GVAL[poly]. Let µ,λ > 0 and x ∈]a,b[ such that d(x,Γ∪ {a,b})> λ−1. It
follows from the results above that:∣∣ f (x)− F̃ (x,µ,λ)

∣∣6 ∣∣ f (x)− f̃ (x,µ+1,λ)
∣∣+ ∣∣F̃ (x,µ,λ)− f̃ (x,µ+1,λ)

∣∣
6 e−µ−1 + ∣∣x −clamp(x,µ+1+p(1+norm∞,1(x,µ,λ)),λ)

∣∣
×p (max(|x|,∣∣clamp(x,µ+1+p(1+norm∞,1(x,µ,λ)),λ)

∣∣,µ+1,λ)
)

6 e−µ−1 +e−µ−1−p(1+norm∞,1(x,µ,λ))

×p
(
max(|x|, |x|+e−µ−1−p(1+norm∞,1(x,µ,λ)),µ+1,λ)

)
6 e−µ−1

+e−µ−1−p(max(1+|x|,µ+1,λ))p(max(|x|, |x|+1,µ+1,λ))

6 2e−µ−16 e−µ

�

Theorem 13.4 (Periodic approximability) Let f : R→ R be a τ-periodic func-
tion. Assume that there exists a,b ∈K such that b−a = τ and f is GPAC-approximable
over ]a,b[ but Γ. Then f is GPAC-approximable over R but (Γ∪ {a,b})+τZ.

Proof: First note that we can assume that a +b = 0: define g (x) = f (x +δ) where
δ= a+b

2 , take a GPAC-approximation f̃ of f over ]a,b[ butΓ. Observe that g̃ (x,µ,λ) =
f̃ (x +δ,µ,λ) provides an approximation of g over ]a −δ,b −δ] but Γ−δ. Then f is
approximable over R but (Γ∪ {a,b})+τZ if and only if g is approximable over R but
((Γ−δ)∪ {a −δ,b −δ})+τZ. Now observe that (a −δ)+ (b −δ) = a +b −2δ= 0.

For a similar reason, we can assume that τ = 1 by rescaling x. It follows that we
can assume that a = −1/2 and b = 1/2. Let f̃ be a GPAC-approximation of f over
]−1

2 , 1
2 [ but Γ. We use the same trick as in Theorem 13.3 to ensure that f̃ is defined

over R×]0,+∞[2. Let sp be a polynomial such that f̃ ∈ GVAL[sp]. Apply Proposition
13.2 to f̃ to get a polynomial q . Recall that q acts as a modulus of continuity:∣∣ f̃ (x,µ,λ)− f (y,µ,λ)

∣∣6 |x − y |q(sp(max(|x|, |y |,µ,λ)))

for any x, y ∈]a,b[ and µ,λ > 0. Let p ∈ K[R] be a nondecreasing polynomial such
that p(x)> q(sp(x)) for all x > 0. Define for any x ∈R and µ,λ> 0:

F̃ (x,µ,λ) = f̃ (x − rnd(x,µ+1+p(1+norm∞,1(µ,λ)),λ),µ+1,λ)

Clearly F̃ ∈ GVAL[poly]. Let µ,λ > 0 and x ∈]a,b[ such that d(x, (Γ∪ {a,b})+τZ)>
λ−1. It follows that there exists n ∈Z such that x = n+u where u ∈]−1

2 +λ−1, 1
2 −λ−1[

and d(u,Γ)>λ−1. Apply Lemma 13.6 to get that |rnd(x,µ+1+p(1+norm∞,1(µ,λ)),λ)−
n|6 e−µ−1−p(1+norm∞,1(µ,λ)) so in particular |x−rnd(x,µ+1+p(1+norm∞,1(µ,λ)),λ)−
u|6 e−µ−1−p(1+norm∞,1(µ,λ)). In particular, |x−rnd(x,µ+1+p(1+norm∞,1(µ,λ)),λ)|6
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1. It follows that:∣∣ f (x)− F̃ (x,µ,λ)
∣∣6 ∣∣ f (x)− f̃ (u,µ+1,λ)

∣∣+ ∣∣F̃ (x,µ,λ)− f̃ (u,µ+1,λ)
∣∣

6
∣∣ f (x −n)− f̃ (u,µ+1,λ)

∣∣
+ ∣∣x − rnd(x,µ+1+p(1+norm∞,1(µ,λ)),λ)−u

∣∣
×p (max(|u|,∣∣x − rnd(x,µ+1+p(1+norm∞,1(µ,λ)),λ)

∣∣,µ+1,λ)
)

6 e−µ−1 +e−µ−1−p(1+norm∞,1(µ,λ))p
(
max(1,1,µ+1,λ)

)
6 e−µ−1 +e−µ−1−p(max(1,µ+1,λ))p(max(1,µ+1,λ))

6 2e−µ−16 e−µ

�

13.7 Generable fields

In Section 13.2, we introduced the notion of generable field, which are fields with an
additional stability property. We used this notion to ensure that the class of func-
tions we built is closed under composition. It is well-known that if we allow any
choice of constants in our computation, we will gain extra computational power be-
cause of uncomputable real numbers. For this reason, it is wise to make sure that we
can exhibit at least one generable field consisting of computable real numbers only,
and possibly only polynomial time computable numbers in the sense of computable
analysis [Brattka et al., 2008].

Intuitively, we are looking for a (the) smallest generable field, call it RG , in order
to minimize the computation power of the real numbers it contains. The rest of this
section is dedicated to the study of this field. We first recall Definition 13.2.

Definition 13.12 (Generable field) A field K is generable if and only if Q ⊆ K
and for any α ∈K, and ( f :R→R) ∈ GVALK, f (α) ∈K.

13.7.1 Extended stability

By definition of a generable field,K is preserved by unidimensional generable func-
tions. An interesting question is whether K is also preserved by multidimensional
functions. This is not immediate because because of several key differences in the
definition of multidimensional generable functions. We first recall a folklore topol-
ogy lemma.

Lemma 13.12 (Offset of a compact set) Let X ⊆U ⊆Rn where U is open and X
is compact. Then there exists ε > 0 such that Xε ⊆ U where the ε-offset of X is
defined by Xε =⋃

x∈X Bε(x).
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Proof:This is a very classical result: let F =Rn \U , then F is closed so the distance
function3 dF to F is continuous. Since X is compact, dF (X ) is a compact subset of
R+, and dF (X ) is nowhere 0 because X ⊆ U ⊆ F where U is open. Consequently
dF (X ) admits a positive minimum ε. Let x ∈ Xε, then ∃y ∈ X such that

∥∥x − y
∥∥ < ε,

and by the triangle inequality, ε6 dF (y)6
∥∥x − y

∥∥+dF (x) so dF (x) > 0 which means
x ∉ F , in other words x ∈U . �

Lemma 13.13 (Polygonal path connectedness) An open, connected subset U of
Rn is always polygonal-path-connected: for any a,b ∈U , there exists a polygo-
nal patha from a to b in U . Furthermore, we can take all intermediate vertices
inQn .

aA polygonal path is a connected sequence of line segments

Proof:This is a textbook property, e.g. Theorem 3-5 in [?]. �

Proposition 13.5 (Generable path connectedness) An open, connected subset
U of Rn is always generable-path-connected: for any a,b ∈U ∩Kn , there exists
(φ :R→U ) ∈ GVALK such that φ(0) = a and φ(1) = b.

Proof: Let a,b ∈ U ∩Kn and apply Lemma 13.13 to get a polygonal path γ :
[0,1] → U from a to b. We are going to build a highly smoothed approximation of
γ. This is usually done using bump functions but bump functions are not analytic,
which complicates the matter. Furthermore, we need to build a path which domain
of definition is R, although this will be a minor annoyance only. We ignore the case
where a = b which is trivial and focus on the case where a 6= b.

Let X = γ([0,1]) which is a compact connected set. Apply Lemma 13.12 to get
ε> 0 such that Xε ⊆U . Without loss of generality, we can assume that ε ∈Q so that
it is generable.

Assume for a moment that γ is trivial, that is γ is a line segment from a to b. Let
α ∈N⊆K such that 1

tanh(α) 6 1+ 2ε
‖b−a‖ . It exists because 1

tanh(x) −−−−→x→∞ 1. Defineφ(t ) =
a + 1+µ(t )

2 (b − a) where µ(t ) = tanh((2t−1)α)
tanh(α) . One can check that µ is an increasing

function and that µ(0) = −1 and µ(1) = 1. Furthermore, if t > 1, |µ(t )− 1| < 2ε
‖b−a‖ ,

and conversely, if t < 0, |µ(t )+ 1| < 2ε
‖b−a‖ . Consequently, φ(0) = a, φ(1) = b and

φ([0,1]) is the line segment between a and b, so φ([0,1]) ⊆ X . Furthermore, if t < 0,∥∥a −φ(t )
∥∥ 6 ∣∣∣ 1+µ(t )

2

∣∣∣‖b −a‖ < ε, and if t > 1,
∥∥b −φ(t )

∥∥ 6 ∣∣∣ 1−µ(t )
2

∣∣∣‖b −a‖ < ε. We

conclude from this analysis that φ(R) ⊆ Xε ⊆U . It remains to show that φ ∈ GVALK.
Using Lemma 13.1, it suffices to show that tanh ∈ GVALK and 1

tanh(α) ∈ K. Since K
is a field, we need to show that tanh(α) ∈ K which is a consequence of K being a
generable field and tanh being a generable function. We already saw in Example
13.2 that tanh ∈ GVALQ ⊆ GVALK.

In the general case where γ is a polygonal path, there are 0 = t1 < t2 < . . . < tk = 1
such that γ�[ti ,ti+1] is the line segment between xi = γ(ti ) and xi+1 = γ(ti+1), further-
more we can always take xi ∈Qn . Note that we can choose any parametrization for

3We always use the infinite norm ‖·‖ in this paper but it works for any distance
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the path so in particular we can take ti = i
k and ensure that ti ∈Q for i ∈ J0,kK. Since

by hypothesis x0, xn ∈Kn , we get that xi ∈Kn and ti ∈K for all i ∈ J0,kK.

Let us denote by φa,b
ε the path built in the previous case. We are simply going to

add several instances of this path, with the necessary shifting and scaling. Since the
errors will sum up, we will increase the approximation precision of each segment.

Define φ(t ) = a +∑k−1
i=1

(
φ

xi ,xi+1
ε/k

(
t−ti

ti+1−ti

)
−xi

)
and consider the following cases:

• if t < 0, then
∥∥∥φxi ,xi+1

ε/k

(
t−ti

ti+1−ti

)
−xi

∥∥∥ < ε
k for all i ∈ J1,k − 1K, so

∥∥a −φ(t )
∥∥ <

k−1
k ε and φ(t ) ∈ Xε

• if t ∈ [t j , t j + 1] for some j , then
∥∥∥φxi ,xi+1

ε/k

(
t−ti

ti+1−ti

)
−xi

∥∥∥ < ε
k for all i > j , and

conversely
∥∥∥φxi ,xi+1

ε/k

(
t−ti

ti+1−ti

)
−xi+1

∥∥∥ < ε
k for all i < j . Finally u =φx j ,x j+1

ε/k

(
t−t j

t j+1−t j

)
belongs to the line segment from x j to x j+1. Since a = x1, we get that

∥∥u −φ(t )
∥∥6

k−1
k ε and thus φ(t ) ∈ Xε.

• if t > 1 then
∥∥b −φ(t )

∥∥ < ε for the same reason as t < 0, and thus φ(t ) ∈ Xε.

We conclude that φ(R) ⊆ Xε ⊆ U and one easily checks that φ(0) = a and φ(1) = b.
Furthermore φ ∈ GVALK by Lemma 13.1 and because the xi and ti belong to K (see
the details in the case of the trivial path). �

The immediate corollary of this result is thatK is also preserved by multidimen-
sional generable functions. Indeed, by composing a multidimensional function with
a unidimensional one, we get back to the unidimensional case and conclude that
any generable point in the input domain must have a generable image.

Corollary 13.2 (Generable field stability) Let ( f :⊆Rd →R`) ∈ GVALK, then f (Kd∩
dom f ) ⊆K`.

Proof: Apply Definition 13.3 to get n ∈ N, p ∈ Mn,d (K) [Rn], x0 ∈ dom f ∩Kd ,
y0 ∈Kn and y : dom f →Rn . Let u ∈ dom f ∩Kd . Since dom f is open and connected,
by Proposition 13.5, there exists (γ : R → dom f ) ∈ GVAL such that γ(0) = x0 and
γ(1) = u. Apply Definition 13.3 to γ to get n̄ ∈ N, p̄ ∈ Mn̄,1 (K) [Rn̄], x̄0 ∈ K, ȳ0 ∈
Kn̄ and ȳ : R→ Rn̄ . Define z(t ) = y(γ(t )) = y(ȳ1..d (t )), then z ′(t ) = Jy (γ(t ))γ′(t ) =
p(y(γ(t )))γ′(t ) = p(z(t ))p̄1..d (ȳ(t )) and z(0) = y(γ(0)) = y(x0) = y0. In other words
(ȳ , z) satisfy: {

ȳ(0)= x0 ∈Kd

z(0)= y0 ∈Kn

{
ȳ ′= p̄(ȳ)
z ′= p(z)p̄1..`(ȳ)

Consequently (z :R→R`) ∈ GVAL so, by definition of a generable field, z(K) ⊆Kz el l .
Conclude by noticing that z(1) = y(γ(1)) = y(u). �

13.7.2 Generable real numbers

In this section, we formalize the notion of generable field with an operator and study
its properties. Recall that the smallest field we are looking for is a subset of R but it
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must also contains Q. We consider the following operator G on subset of real num-
bers.

G :

 P (R) → P (R)
X 7→ ⋃

f ∈GVALX

f (X )

Remark 13.10 (G monotone and non-decreasing) One can check that G is mono-
tone (X ⊆G(X ) for any X ⊆R). Indeed for any x ∈ X , the constant function u 7→ x
belongs to GVALX . Moreover, it is non-decreasing because GVALX ⊆ GVALY if
X ⊆ Y .

It is clear that by definition, a field is generable if and only if it is G-stable. An
interesting property of G is that its definition can be simplified. More precisely, by
rescaling the functions, we can always assume that the image of G is produced by the
evaluation of generable functions at a particular point, say 1, instead of the entire
field.

Lemma 13.14 (Alternative definition of G) If X is a field then,

G(X ) = {
f (1) : f ∈ GVALX

}
Proof: Let x ∈ G(X ), then there exists f ∈ GVALX and t ∈ X such that x = f (t ).

Consequently there exists d ∈N, y0 ∈ X d , p ∈ X d [Rd ] and y :R→Rd satisfying Defi-
nition 13.1:

• y ′ = p(y) and y(0) = y0

• y1 = f

Consider g (u) = f (ut ) and note that g (1) = f (t ) = x. We will see that g ∈ GVALX .
Indeed, consider z(u) = y(tu) then for all u ∈R:

• z(0) = y(0) = y0 ∈ X d ;

• z ′(u) = t y ′(tu) = t p(z(u)) = q(z(u)) where q = t p is a polynomial with coeffi-
cients in X since t ∈ X and X is a field

• z1(u) = y1(tu) = g (u)

�
A consequence of this alternative definition is a simple proof that G preserves

the property of being a field. This will turn out to be crucial fact later on.

Lemma 13.15 (G maps fields to fields) If X is a field, then G(X ) is a field.

Proof: Let x, y ∈ G(X ), by Lemma 13.14 there exists f , g ∈ GVALX such that x =
f (1) and y = g (1). Apply Lemma 13.1 to get that f ± g and f g belong to GVALX And
thus x ± y and x y belong to G(X ).
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Finally the case of 1
x (when x 6= 0) is slightly more subtle: we cannot simply com-

pute 1
f because f may cancel. Instead we are going to compute 1

g where g (1) = f (1)
but g nevers cancels.

First, note that we can always assume that x > 0 because G(X ) is closed under
the negation, and − 1

x = 1
−x . Since f (1) = x > 0 and f is continuous, it means there

exists ε > 0 such that f (t ) > 0 for all t ∈ [1− ε,1+ ε] and we can take ε ∈ Q. Define

g (t ) = f (t )+ (
1+ f (t )2

)( t−1
ε

)2
. It is not hard to see that g (1) = f (1) and that g (t ) > 0

for all t ∈ R. Furthermore, g ∈ GVALX because of Lemma 13.1. Note that we use the
part of the lemma which does not assume that X is a generable field!

Using Lemma 13.1, we conclude that 1
g ∈ GVALX and thus 1

x ∈G(X ). �
Not only G maps fields to fields, but it also preserves polynomial-time com-

putability. This is of major interest to us to show that there exists a generable field
with low complexity numbers. Here RP denotes the set of polynomial time com-
putable real numbers [Ko, 1991].

Lemma 13.16 (G preserves polytime computability) G maps subsets of poly-
nomial time computable real numbers into themselves, i.e. for any X ⊆ RP ,
G(X ) ⊆RP .

Proof: Let X ⊆RP and x ∈G(X ), f ∈ GVALX and t ∈ X such that x = f (t ). We can
use [?] to conclude that x is polynomial time computable, thus x ∈RP . �

Finally, the core of what makes G very special is its finiteness property. Essen-
tially, it means that if x ∈G(X ) then x really only requires a finite number of elements
in X to be computed. In the framework of order and lattice theory, this shows that
G is a Scott-continuous function between the complete partial order (CPO) (L ,⊆)
and itself.

Lemma 13.17 (Finiteness of G) For any X ⊆R and x ∈G(X ), there exists a finite
Y ⊆ X such that x ∈G(Y ).

Proof: Let x ∈ G(X ), then there exists f ∈ GVALX and t ∈ X such that x = f (t ).
Then there exists y0 ∈ X d and a polynomial p with coefficients in X such that f
satisfies Definition 13.1. Define Y as the subset of X containing t , the components
of y0 and all the coefficients of p. Then Y is finite and f ∈ GVALY . Furthermore t ∈ Y
so x ∈G(Y ). �

We can now define the set of “generable real numbers”, call it RG . The main
result of this section is that RG is the smallest generable field. But more surprisingly,
we show that all the elements of RG are polynomial time computable (in the sense
of Computable Analysis).

Definition 13.13 (Generable real numbers)

RG = ⋃
n>0

G [n](Q).
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Theorem 13.5 (RG is generable subfield of RP ) RG is the smallest generable field
for inclusion. Furthermore, it form a generable subfield of polynomial time com-
putable real numbers in the sense of Computable Analysis, i.e. RG ⊆RP .

Proof: First observe that any generable field must contain RG . Indeed, let K
be a generable field: then G(K) ⊆ K by definition. But G is non-decreasing thus
G(Q) ⊆ G(K) ⊆K. By applying G repeatedly, we get that G [n](Q) ⊆K for all n. Thus
RG ⊆K.

Conversely, we need to show thatRG is a field. Observe that since G is monotone,
G [n](Q) is an increasing sequence (for inclusion). Let x, y ∈ RG , then there exists
n ∈ N such that x, y ∈ G [n](Q). Apply Lemma 13.15 to get that G [n](Q) is a field. It
follows that x + y, x − y, x y and x

y (if y 6= 0) belong to G [n](Q) ⊆RG . Thus RG is a field.
It remains to show that RG is a generable field. This follows from Lemma 13.17:

let x ∈ G(RG ), then there exists a finite Y ⊆ RG such that x ∈ G(Y ). Using the same
reasoning as above, there exists n ∈ N such that Y ⊆ G [n](Q). Thus x ∈ G(Y ) ⊆
G(G [n](Q)) =G [n+1](Q) ⊆RG . It follows that G(RG ) ⊆RG , i.e. it is generable.

Finally, sinceQ⊆RP , iterating Lemma 13.16 yields that G [n](Q) ⊆RP for all n ∈N
and thus RG ⊆RP . �
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Chapter 14

Simulating Turing Machines by
Analytic Functions

14.1 Coding of configurations of Turing machines

14.1.1 Turing machines

We want to obtain a map that captures the behavior of the transition function of a
Turing Machine.

Without loss of generality, consider a Turing machine M using 10 symbols, the
blank symbol B = 0, and symbols 1,2, ...9. Let

. . .BBB a−k a−k+1 . . . a−1a0a1 . . . anBBB. . . .

(1) represent the tape contents of the Turing machine M . We suppose the head to be
reading symbol a0 and ai ∈ {0,1, . . . ,9} for all i . We also suppose that M has m states,
represented by numbers 1 to m. For convenience, we consider that if the machine
reaches a halting configuration it moves to the same configuration. We assume that,
in each transition, the head either moves to the left, moves to the right, or does not
move.

14.1.2 Coding a configuration: using integers.

Take

y1 = a0 +a110+·· ·+an10n ,

y2 = a−1 +a2 10+·· ·+a−k 10k−1,

and let q be the state associated to the current configuration.

99
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Then the triple
γT M
N3 (C ) = (y1, y2, q) ∈N3

encodes the current configuration C of M by an element ofN3.

14.1.3 Coding a configuration: using integers (variant).

Then the triple
γT M
N2 (C ) = (q + (m +1)y1, y2, q) ∈N3

encodes the current configuration C of M by an element ofN2.

14.1.4 Coding a configuration: using (0,1) and arctan.

Consider ν :N→ (0,1) defined by
Then the triple

γT M
(0,1)2 (C ) =

(
2

π
arctan(y1),

2

π
arctan(y2),

2

π
arctan(q)

)

14.1.5 Coding a configuration: using [0,1]

Take

y1 = a010−1 +a110−2 +·· ·+an10−n−1,

y2 = a−110−1 +a2 10−2 +·· ·+a−k 10−k ,

and let q be the state associated to the current configuration.
Then the triple

γT M
[0,1](C ) = (y1, y2, q) ∈ [0,1]2 × {1,2, . . . ,m}

encodes the current configuration C of M by an element of [0,1]2 × {1,2, . . . ,m}.

14.2 Discrete time simulation: γT M
N2

14.2.1 Koiran-Moore 99’s theorem

Definition 14.1 Let Un be the smallest class of functions f : Rn → R contain-
ing rational constants, π, the n projections x 7→ xi and satisfying the following
closure properties:

• if f , g ∈Un then f ⊕ g ∈Un , where ⊕∈ {+,−,×}

• if f ∈Un then sin( f ) ∈Un
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We will say that f :Rn →Rn is elementary if its n components are in Un .

Theorem 14.1 (Koiran-Moore’s Theorem [Koiran and Moore, 1999]) For any Tur-
ing machine M and any input w, there is an elementary function f on two vari-
ables and constants a and b such that M halts on input w after t steps if and
only if f [t ](a +bw,0) = (0,0).

Proof of Koiran-Moore 99’s theorem

If we define

hp (x) =
(

sin(πx)

p sin πx
p

)2

then we have (for integer t and a)

h10(m+1)(x − (t + (m +1)a)) =
{

1 if q = t and a0 = a
0 otherwise

h10(y2 −a) =
{

1 if a−1 = a
0 otherwise

Then let qnext = qnext (q, a0) be the Turing machine’s new state, a′ = a′(q, a0) be
the symbol it writes on the tape, H = H(q, a0) its movement left or right with the
convention that H = 0 for halt states and +/−1 for non-halting states.

Then if we define

(xr i g ht , yr i g ht ) = (qnext + x −q − (m +1)a0

10
,10y +a′)

(xl e f t , yle f t ) = (qnext +10(x −q + (m +1)(a′−a0))+ (m +1)a−1,
y −a−1

10
)

corresponding to shifting the machine to the right or left, we can simulate the
Turing machine with the function:

f (x, y) =
m∑

q=1

10∑
a0=0

H 2(s, a0) ·h10(m+1)(x − (q + (m +1)a0))×

[(
1+Hq,a0

2

)
· (xr i g ht , yr i g ht )+

(
1−Hq,a0

2

) 10∑
a−1=0

h10(y−a−1) · (xle f t , yle f t )

]

An initial TM state q0 with an input w on the right half of the tape corresponds
to an initial point (q0 +nw,0). If the machine erases the tape before halting, and if
the state is s = 0, halting is indicated by arriving at (0,0).
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14.3 Discrete time simulation: γT M
N3

14.3.1 Graça-Campagnolo-Buescu’s Theorem 1

We now can state the first main result of this paper as follows:

Theorem 14.2 (Graça-Campagnolo-Buescu’s [Graça et al., 2005a, Theorem 1])
Let θ :N3 →N3 be the transition function of a Turing machine M, under the en-
coding γT M

N3 described above and let 0 < δ < ε < 1/2. Then θ admits an analytic

extension fM : R3 → R3, robust to perturbations in the following sense: for all f
such that

∥∥ f − fM
∥∥ ≤ δ, and for all x0 ∈R3 satisfying

∥∥x0 −x0
∥∥ ≤ ε, where x0 ∈N3

represents an initial configuration,∥∥∥ f [ j ](x0)−θ[ j ](x0)
∥∥∥ ≤ ε for all j ∈N.

A few remarks are in order. First, and as noticed before, we implicitly assumed
that if y is a halting configuration, then θ(y) = y . Secondly, we notice that the upper
bound 1/2 on ε results from the chosen encodingn, which is over the integers. In
fact, the bound is maximal with respect to that encoding.

14.3.2 Some basic functions

Mod functionω

This section is devoted to the presentation of results that, while not very inter- esting
on their own, will be useful when proving Theorem 1.

As our first task, we introduce an analytic extensionω :R→R for the function f :
N→N defined by f (n) = n mod10 . This function will be necessary when simulating
Turing machines. It will be used to read symbols written in the tape.

To achieve this purpose, we can use a periodic function, of period 10, such that
ω(i ) = i , for i = 0,1, ...,9. Then, using trigonometric interpolation (cf. [22, pp. 176-
182]), one may take

ω(x) = a0 +a5 cos(πx)+
(

4∑
j=1

a j cos

(
jπx

5
+b j sin(

jπx

5

))
, (14.1)

where a0, . . . , a4,b1, . . . ,b4 are computable coefficients taht can be explicitely obtained
by solving a systeme of linear equations.

It is easy to see that ω is uniformly continuous in R. Hence, for every ε ∈ (0,1/2),
there will be some ηε > 0 satisfying

∀n, x ∈ [n −ηε,n +ηε] ⇒|ω(x)−n mod10| ≤ ε. (14.2)

Error correcting function σ

When simulating a Turing machine, we will also need to keep the error under con-
trol. In many cases, this will be done with the help of the error-contracting function
defined by
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σ(x) = x −0.2sin(2πx).

The function σ is a contraction on the vicinity of integers:

Lemma 14.1 Let n ∈Z, and let ε ∈ [0,1/2). Then there is some contracting factor
λε ∈ (0,1) such that ∀δ ∈ [−ε,ε], |σ(n +δ)−n| <λεδ.

Proof: It is sufficient to consider the case where n = 0. Because σ is odd, we only
study σ in the interval [0,ε]. Let g (x) = σ(x)/x. This function is strictly increasing
in (0,1/2]. Then, noting that g (1/2) = 1 and limx→0 g (x) = 1−0.4π ≈ −0.256637, we
conclude that there exists some λε ∈ (0,1) such that |σ(x)| < λε|x| for all x ∈ [−ε,ε]
�

For the rest of this document, we suppose that ε ∈ [0,1/2) is fixed and that λε is
the respective contracting factor given by Lemma 14.1.

The function σ will be used in our simulation to keep the error controlled when
bounded quantities are involved (e.g., the actual state, the symbol being read, etc.).

Error correcting function l3

We will also need another error-contracting function that controls the error for un-
bounded quantities. This will be achieved with the help of the function l3 : R2 →
R, that has the property that whenever a is an approximation of a ∈ {0,1,2}, then
|a − l3(a, l )| < 1/y , for y > 0. In other words, l3 is an error- contracting map, where
the error is contracted by an amount specified by the second argument of l3.

Lemma 14.2 ([Graça, 2007, Lemma 4.2.3])
∣∣π

2 −arctan x
∣∣< 1

x for x ∈ (0,∞)

Proof: Let f (x) = 1
x +arctan x − π

2 . It is easy to see that f is decreasing in (0,∞)
and that limx→∞ f (x) = 0. Therefore f (x) > 0 for x ∈ (0,∞) and the result holds. �

Lemma 14.3 ([Graça, 2007, Lemma 4.2.4])
∣∣π

2 +arctan x
∣∣< 1

|x| for x ∈ (−∞,0).

Proof: Take f (x) = 1
x +arctan x + π

2 and proceed as in Lemma 14.2. �
In order to define function l3 we first define a preliminary function l2 satisfying

similar conditions, but only when a ∈ {0,1}.

Lemma 14.4 ([Graça, 2007, Lemma 4.2.5]) Let l2 :R2 →R be given by

l2(x, y) = 1

π
arctan(4y(x −1/2))+ 1

2
.

Suppose that a ∈ {0,1}. Then, for any a, y ∈ R satisfying |a − a| ≤ 1/4 and y > 0,
we get |a − l2(a, y)| < 1/y.

Proof:
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• Consider a = 0. Then ā − 1/2 ≤ −1/4 implies |4y(ā − 1/2)| ≥ y. Therefore, by
Lemma 14.3 ∣∣∣π

2
+arctan(4y(ā −1/2))

∣∣∣< 1

|4y(ā −1/2)| ≤
1

y
.

Moreover, multiplying the last inequality by 1/π and noting that 1
πy < 1

y , it
follows that ∣∣a − l2(ā, y)

∣∣< 1/y.

• Consider a = 1. Remark that ā−1/2 ≥ 1/4 and proceed as above, using Lemma
14.2 instead of Lemma 14.3.

�

Lemma 14.5 ([Graça, 2007, Lemma 4.2.7]) Let a ∈ {0,1,2} and let l3 :R2 →R be
given by

l3(x, y) = l2((σ[d+1](x)−1)2,3y)(̇2l2(σ[d ](x)/2,3y)−1)+1,

where d = 0 if ε≤ 1/4 and d = d− log(4ε)/ logλεe otherwise. Then for any a, y ∈R
satisfing |a −a| ≤ ε and y ≥ 2 we have |a − l3(a, y)| < 1/y.

Proof: Let us start by noticing that for all x, y ∈R for which l2(x, y) is defined, we
have that 0 < l2(x, y) < 1. Consider the case where a = 0 and ā ∈ [−1/4;1/4]. By other
words, take ε≤ 1/4. Then

∣∣(σ(ā)−1)2 −1
∣∣< 1/4, and by the previous lemma,

1−1/y < l2
(
(σ(ā)−1)2, y

)< 1

Similarly, we conclude
−1 < 2l2(ā/2, y)−1 <−1+2/y

Since y ≥ 2, this implies

−1 < l2
(
(σ(ā)−1)2, y

)(
2l2(ā/2, y)−1

)< (1−1/y)(−1+2/y)

Or
0 < l2

(
(σ(ā)−1)2, y

)(
2l2(ā/2, y)−1

)+1 < 3/y

Hence, for a = 0,
∣∣a − l3(ā, y)

∣∣< 1/y. Proceeding similarly for a = 1,2 and ε≤ 1/4, the
same result follows.

It remains to consider the more general case |a−ā| ≤ ε. Taking d = ⌈− log(4ε)/ logλε
⌉

and applying d times the function σ to ā, it follows that
∣∣a −σ[d ](ā)

∣∣ ≤ 1/4 and we
fall back in the previous case (use σ[d ](ā) instead of ā) �

An observation

The following lemma can be easily proved by induction on n.
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Lemma 14.6 If |αi |, |αi | ≤ K for i = 1, . . . ,n then

α1 . . .αn −α1 . . .αn | ≤ (|α1 −α1|+ . . . |αn −αn |)K n−1.

14.3.3 Another statement

In this section we show, in a constructive manner, how to simulate a Turing ma-
chine with an analytic map robust to (small) perturbations. We will first prove the
following theorem.

Theorem 14.3 Let θ : N3 → N3 be the transition function of some Turing ma-
chine. Then, given some 0 ≤ ε< 1/2, θ admits an analytic extension hM :R3 →R3

with the property that∥∥(y1, y2, q)− (y1, y2, q)
∥∥ ≤ ε⇒ ∥∥θ(y1, y2, q)−hM (y1, y2, q)

∥∥ ≤ ε (14.3)

where (y1, y2, q) ∈N3 encodes some configuration of M.

14.3.4 Proof of this statement

Proof: We will show how to construct hM with analytic functions:

1. Determine the symbol being read. Let a0 be the symbol being actually read
by the Turing machine M . Then ω(y1) = a0, where ω is given by (14.1).

But what about the effect of the error present in y1?

Since |y1 − y1| ≤ ε ,

|a0 −ω◦σ[l ](y1)| ≤ ε, with l =
⌈∣∣∣∣ log(χε/ε)

logλε

∣∣∣∣⌉ , (14.4)

where χε is given (14.2). Then pick y =ω◦σ[l ](y1) as an approximation of the
symbol being currently read. Similarly, ω◦σ[l ](y2) gives an approximation of
a−1, with error bounded by ε.

2. Determine the next state. The map that returns the next state is defined by
polynomial interpolation. This can be done as follows. Let y be the symbol be-
ing currently read and q the current state. Recall that m denotes the number
of states and k = 10 is the number of symbols. One may take

qnext =
9∑

i=0

m∑
j=1

(
9∏

r=0,r 6=i

(y − r )

(i − r )

)(
m∏

s=1,s 6= j

(q − s)

( j − s)

)
qi , j ,

where qi , j is the sate that follows symbol i and state j .

However, we are dealing with the approximations q and y .

Therefore, we define
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qnext =
9∑

i=0

m∑
j=1

(
9∏

r=0,r 6=i

(σ[n](y)− r )

(i − r )

)(
m∏

s=1,s 6= j

(σ[n](q)− s)

( j − s)

)
qi , j , (14.5)

with

n =
⌈

log(10m2K m+7(m +8)

− logλε

⌉
, K = max{9.5,m +1/2}.

With this choice for n, the error of σ[n](y) and σ[n](q) is such that

9|y −σ[n](y)|+ (m −1)|q −σ[n](q)| ≤ ε

10m2K m+7 . (14.6)

Thus from (14.5), (14.6) and Lemma 14.6, w concluse that |qnext −qnext | ≤ ε.

3. Determine the symbol to be written on the tape. Using a similar construc-
tion, the symbol to be written, snext , can be approximated with precision ε ,
i.e. |snext − snext | ≤ ε.

4. Determine the direction of the move for the head. Let h denote the direction
of the move of the head, where h = 0 denotes a move to the left, h = 1 denotes
a “no move”, and h = 2 denotes a move to the right. Then, again, the “next
move” hnext can be approximated by means of a polynomial interpolation as
in steps 3 and 4, therefore obtaining |hnext −hnext | ≤ ε.

5. Update the tape contents. We define functions P 1, P 2, P 3, which are in-
tended to approximate the tape contents after the head moves left, does not
move, or moves right, respectively. Let H be a “sufficiently good” approxima-
tion of h , yet to be determined. Then, the next value of y , ynext

1 , can next be
approximated by

ynext
1 = P 1

1

2
(1−H)(2−H)+P 2H(2−H)+P 3(−1

2
)H(1−H), (14.7)

with

P 1 = 10(σ[ j ](y1)+σ[ j ](snext )−σ[ j ](y)+σ[ j ] ◦ω◦σ[ j ](y2)

P 2 = σ[ j ](y1)+σ[ j ](snext )−σ[ j ](y)

P 3 = σ[ j ](y1)−σ[ j ](y)

10
,

where j ∈N is sufficiently large and l is given by (14.4). Notice that when exact
values are used, ynext

1 = ynext
1 . The problem in this case is that P 1 depends

on y1, which is not a bounded value. Thus, if we simply take H = hnext the
error of the term (1 − H)(2 − H)/2 is arbitrarily amplified when this term is
multiplied by P 1. Hence, H must be a sharp estimate of hnext , proportional to
y1. Therefore, using Lemma ?? and the definition of y1, one can see that it is
suffices to take

H = l3(h3,10000(y1 +1/2)+2).
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Using the same argument for P 2 and P 3 we conclude that |ynext
1 − ynext

1 | < ε.

Similarly, and for the left side of the tape, we can define ynext
2 such that |ynext

2 −
ynext

2 | < ε.

Finally, hM :R3 →R3 is defined by hM (y1, y2, q̄) = (ynext
1 , ynext

2 , qnext ).

�

14.3.5 Proof of Graça-Campagnolo-Buescu’s Theorem 1

Let 0 ≤ δ < ε . Then, using Theorem 14.3, one can find a map hM such that (14.3)
holds. Let i ∈N satisfy σ[i ](ε) ≤ ε−δ . Define a map fM =σ[i ] ◦hM . Then, if x0 ∈N3

is an initial configuration,∥∥x0 −x0
∥∥ ≤ ε⇒ ∥∥ fM (x0)−θ(x0)

∥∥ ≤ ε−δ.

Thus by triangular inequality, if
∥∥x0 −x0

∥∥, then∥∥ fM (x0)−θ(x0)
∥∥ ≤ ∥∥ fM (x0)− fM (x0))

∥∥+∥∥ fM (x0))−θ(x0)
∥∥ ≤ δ+ (ε−δ) = ε

This proves the result for j = 1. For j > 1, we proceed by induction.

14.4 Discrete time simulation: γT M
(0,1)2

Now we use the previous construction to simulate a Turing machine on a compact
set X = (−1,1)3. This is a trick similar to the one used in [Bournez et al., 2013], based
on a change of variable.

If the iterations of fM (x, y, z) simulate M overN3, then

˜fM (x̃, ỹ , z̃) =ψ( fM (ψ−1(x̃, ỹ , z̃))

does the same over (0,1) considering

ψ(x, y, z) = (x̃, ỹ , z̃) = (
2

π
arctan x,

2

π
arctan y,

2

π
arctan z)

And thus,

x = tan(x̃
π

2
)

y = tan(ỹ
π

2
)

z = tan(z̃
π

2
)

We get:
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Theorem 14.4 Let θ : N3 → N3 be the transition function of a Turing machine
M, under the encoding γT M

(0,1)2 described above. Then θ admits an analytic ex-

tension fM : (0,1)3 → (0,1)3, robust to perturbations in the following sense: there
exists 0 < ε such that for all x0 ∈ R3 satisfying

∥∥x0 −x0
∥∥ ≤ ε, where x0 ∈ (0,1)3

represents an initial configuration,∥∥∥tan( f [ j ](x0))−θ[ j ](x0)
∥∥∥ ≤ ε for all j ∈N.

Basically, the simulation of M can be carried out if the states are not perturbed
more than

ε̃= arctan(m +ε)−arctan(m) (14.8)

14.5 Continuous time simulation: γT M
N3

14.5.1 Statement

Theorem 14.5 θ : N3 → N3 be the transition function of a Turing machine M,
under the encoding γT M

N3 described above and let 0 < ε< 1/4. Then there is an an-

alytic function gM : R6 → R6 such that the ODE z ′ = gM (z, t ) robustly simulates
M in the following sense: there is some 0 < η < 1/2 such that for all g satisfying∥∥g − gM

∥∥ < 1/2, and for all x0 ∈R3 satisfying
∥∥x0 −x0

∥∥ ≤ ε the solution of

z ′ = g (z, t ), z(0) = (x0, x0)

has the following property: for all j ∈N, and for all t ∈ [ j , j +1/2],∥∥∥z2(t )−θ[ j ](x0)
∥∥∥ ≤ η.

14.5.2 Iteration maps with ODEs

In this section we show how to iterate a map from integers to integers with smooth
ODEs. By a smooth ODE we understand an ODE

y ′ = f (t , y) (14.9)

where f is of class C k , for 1 ≤ k ≤∞ (but not necessarily analytic). Basically, we will
describe the construction presented by Branicky in [Branicky, 1995], but following
the approach of Campagnolo, Costa, and Moore [?, ?, ?]. Then using the map fM

given by Theorem ??, we will be able to simulate TMs with smooth ODEs. This re-
sult will be extended in the next section to the case of polynomial ODEs robust to
perturbations.

Suppose that f :Zk →Zk is a map. For simplicity, let us assume k = 1. For better
readability, we also break down the procedure in three subtasks.



14.5. CONTINUOUS TIME SIMULATION: γT M
N3 109

Construction 1

Consider a point b ∈R (the target), someγ> 0 (the targeting error), and time instants
t0 (departure time) and t1 (arrival time), with t1 > t0. Then obtain an IVP (the target-
ing equation) defined with an ODE (14.9) where f :R2 →R, such that the solution y
satisfies ∣∣y (t1)−b

∣∣< γ (14.10)

independently of the initial condition y (t0) ∈R
Let φ : R→ R+

0 be some function satisfying
∫ t1

t0
φ(t )d t > 0 and consider the fol-

lowing ODE

y ′ = c(b − y)3φ(t ) (14.11)

where c > 0. There are two cases to consider: (i) y (t0) = b, (ii) y (t0) 6= b. In the first
case, the solution is given by y(t ) = b for all t ∈R and (14.13) is trivially satisfied. For
the second case, note that (14.11) is a separable equation, which gives

1(
b − y (t1)

)2 − 1(
b − y (t0)

)2 = 2c
∫ t1

t0

φ(t )d t ⇒

1

2c
∫ t1

t0
φ(t )d t

> (
b − y (t1)

)2

Hence, (14.13) is satisfied if c satisfies γ2 ≥
(
2c

∫ t1
t0
φ(t )d t

)−1
i.e. if

c ≥ 1

2γ2
∫ t1

t0
φ(t )d t

(14.12)

14.5.3 Construction 2

Obtain an IVP defined with an ODE (14.9) where f :R2 →R, such that the solution r
satisfies

r (x) = j whenever x ∈ [ j −1/4, j +1/4] for all j ∈Z (14.13)

We want a function r : R→ R satisfying this condition for the following reason.
Suppose that on Construction 1, γ < 1/4 and that b ∈ N. Then r

(
y (t1)

) = b, i.e. r
corrects the error present in y (t1) when approaching an integer value b. This will be
useful later in this document.

First let θ j :R→R, j ∈N− {0,1}, be the function defined by

θ j (x) = 0 if x ≤ 0, θ j (x) = x j if x > 0

For j =∞ define

θ j (x) = 0 if x ≤ 0, θ j (x) = e−
1
x if x > 0 (14.14)

These functions can be seen [Campagnolo et al., 2000b] as a C j−1 version of Heavi-
side’s step function θ(x), where θ(x) = 1 for x ≥ 0 and θ(x) = 0 for x < 0
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With the help of θ j , we define a "step function" s :R→R, that matches the iden-
tity function on the integers, as follows:{

s′(x) =λ jθ j (−sin2πx)
s(0) = 0

where

λ j =
∫ 1

1/2
θ j (−sin2πx)d x > 0

For x ∈ [0,1/2], s(x) = 0 since sin2πx ≥ 0. On (1/2,1), s strictly increases and satisfies
s(1) = 1.

Using the same argument for x ∈ [ j , j + 1], for all integer j , we conclude that
s(x) = j whenever x ∈ [ j , j +1/2]. Then defining r : N→ N by r (x) = s(x +1/4), it is
easy to see that r satisfies the conditions set for Construction 2.

One should remark that, for each j ∈N∪{∞}−{0,1}, we get a different function r,
but they all have the same fundamental property (14.14). So, we choose to omit the
reference to index j when defining r (this does not represent any problem in later
results)

14.5.4 Construction 3

Iterate the map f :Z→Zwith a smooth ODE (14.9).
Let f̃ :R→R be an arbitrary smooth extension to the reals of f , and consider the

IVP defined with the smooth ODE{
z ′

1 = c j ,1
(

f̃ (r (z2))− z1
)3
θ j (sin2πt )

z ′
2 = c j ,2 (r (z1)− z2)3θ j (−sin2πt )

(14.15)

and the initial condition {
z1(0) = x0

z2(0) = x0

where x0 ∈ N. We shall use the previous two constructions to iterate f . First, we
use Construction 1 with parameters satisfying: γ≤ 1/4, t0 = 0, t1 = 1/2,φ=φ1 where
φ1(t ) = θ j (sin2πt ) and c = c j ,1 given by (14.12) With these parameters, let us look
to (??). We have that for t ∈ [0,1/2], z ′

2(t ) = 0. Therefore the first equation of (14.15)
becomes

z ′
1 = c (b − z1)3φ(t )

where b = f (x0) . Thus one has
∣∣z1(1/2)− f (x0)

∣∣< γ≤ 1/4. Now, for t ∈ [1/2,1], z ′
1(t ) =

0 and Construction 2 ensures that r (z1(t )) = f (x0) (z1 "remembers" the value of
f (x0) for t ∈ [1/2,1]). If we take Construction 1 but now changing t0 = 1/2, t1 = 1,
the function φ to φ(t ) = φ2(t ) = θ j (−sin2πt ) and c = c j ,2 accordingly, the second
equation of (14.15) becomes

z ′
2 = c (b − z2)3φ(t )

where b = f (x0) . Hence, one has
∣∣z2(1)− f (x0)

∣∣< γ≤ 1/4. Now, for t ∈ [1,3/2], z ′
2(t ) =

0, and Construction 2 ensures that f̃ (r (z2(t ))) = f [2] (x0) (z2 "remembers" the value
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of f (x0) for t ∈ [1,1+1/2]). Noting that both sin2πt and −sin2πt are periodic with
period one, we see that the above procedure can be repeated for all time intervals
[ j , j +1], where j ∈NMoreover, one has that for any given x0 ∈N

r (z2(t )) = f [ j ] (x0) whenever t ∈ [ j , j +1/2]

for all j ∈N
In this sense (14.15) simulates the iteration of the function f :Z→Z. A straight-

forward adaptation of this construction can be applied for the more general case
when f : Zk → Zk , for k ≥ 1. We then obtain an ODE with 2k equations, with a pair
of equations simulating each component f1, . . . , fk of f

14.5.5 Robust simulations of Turing machines with polynomial ODEs

We now adapt the construction presented in the previous section to simulate a TM
with polynomial ODEs, even under the influence of perturbations. The idea is to
iterate the map fM given by Theorem ?? with ODEs, as described in the previous
section. The problem is that the ODE must be polynomial and hence analytic, and
therefore we can no longer use the functions θk for 1 ≤ k ≤∞. Instead, we have to
use a new variation of this construction.

The main idea of the construction to be presented in this section is the following.
Let ψ : N3 → N3 be the transition function of a Turing machine M . If we want to
iterate ψ with analytic ODEs, using a system similar to (14.15), we cannot allow z ′

1
and z ′

2 to be 0 in half-unit intervals cf. Corollary ??. Instead, we allow them to be
very close to zero, which will add some errors to the system (14.15) . Therefore at
time t = 1 both variables will have values close to ψ (x0) . But Theorem (??) shows
that there exists some analytic function fM , robust to errors, that simulates ψ. This
allows us to repeat the process an arbitrary number of times, keeping the error under
control. We now state the main results of this section.

Theorem 14.6 Let ψ : N3 → N3 be the transition function of a Turing machine
M , under the encoding (??) and let 0 < ε < 1/4. There is a polynomial pM :
Rm+4 → Rm+3, with m ∈ N, and a constant y0 ∈ Rm such that the ODE z ′ =
pM (t , z) simulates M in the following sense: for all x0 ∈ N3 and for all x̄0 ∈ R3

satisfying ‖x̄0 −x0‖∞ ≤ ε, the solution z(t ) of the IVP defined by the previous
ODE plus the initial condition

(
x̄0, y0

)
, defined for t0 = 0, satisfies∥∥∥z1( j )−ψ[ j ] (x0)

∥∥∥∞ ≤ ε

for all j ∈N, where z ≡ (z1, z2) with z1 ∈R3 and z2 ∈Rm

Indeed, we will prove the following robust version of Theorem 14.6.

Theorem 14.7 Given the conditions of Theorem 14.6, there is a PIVP function
fM : R7 → R6 and a constant y0 ∈ R3 such that the ODE z ′ = fM (t , z) robustly
simulates M in the following sense: for all g satisfying

∥∥g − fM
∥∥∞ < 1/2, there is
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0 < η< 1/2 such that for all
(
x̄0, ȳ0

) ∈R6 satisfying
∥∥(

x̄0, ȳ0
)− (

x0, y0
)∥∥∞ ≤ ε, the

solution z(t ) of
z ′ = g (t , z), z(0) = (

x̄0, ȳ0
)

satisfies, for all j ∈N and for all t ∈ [ j , j +1/2],∥∥∥z1(t )−ψ[ j ] (x0)
∥∥∥∞ ≤ η

where z ≡ (z1, z2) with z1 ∈R3 and z2 ∈R3

Proof: Let us prove Theorem 4.6 .2 . For simplicity, and without loss of general-
ity, we consider that the function to be iterated, ψ, is a one-dimensional map as in
(14.15). We begin with some preliminary results about the introduction of perturba-
tions in (14.15). �

14.5.6 Studying the perturbed targeting equation

(cf. Construction 1) Because the iterating procedure relies on the basic ODE (14.11),
we have to study the following perturbed version of (14.11)

z ′ = c(b̄(t )− z)3φ(t )+E(t ) (14.16)

where |b̄(t )−b| ≤ ρ and |E(t )| ≤ δ. We take the departure time to be t0 = 0 and the
arrival time to be t1 = 1/2 as in (14.15) .

Therefore we must require that
∫ 1/2

0 φ(t )d t > 0, where c satisfies (14.12) and γ> 0
is the targeting error. Let z̄ be the solution of this new ODE, with initial condition
z̄(0) = z̄0 and let z+, z− be the solutions of z ′ = c(b +ρ− z)3φ(t )+δ and z ′ = c(b −
ρ− z)3φ(t )−δ respectively, with initial conditions z+(0) = z−(0) = z̄0. For simplicity
denote

f (t , z) = c(b̄(t )− z)3φ(t )+E(t )

f+(t , z) = c(b +ρ− z)3φ(t )+δ
f−(t , z) = c(b −ρ− z)3φ(t )−δ

(14.17)

We have that for all (t , x) ∈R2

f−(t , x) ≤ f (t , x) ≤ f+(t , x) (14.18)

Since z̄ is the solution of the ODEz ′ = f (t , z) and z± are the solutions of the ODEsz ′ =
f±(t , z) all with the same initial condition z̄(0) = z+(0) = z−(0) = z̄0, from (14.18)
and a standard differential inequality from the basic theory of ODEs (see e.g. [?,
Appendix T], it follows that z−(t ) ≤ z̄(t ) ≤ z+(t ) for all t ∈ R. Now, if we put upper
and lower bounds on z+ and z− respectively, we get immediately bounds for z̄. Let
us study what happens with z+. For convenience, let y+ be the solution of

y ′ = c(b +ρ− y)3φ(t ) (14.19)

(i.e. y ′ = f+(t , y)−δ)
, with initial condition y+(0) = z̄0. Since f+(t , x) > f+(t , x)−δ for

all (t , x) ∈R2, we have similarly to the case of z−, z̄, and z+, that

y+(t ) ≤ z+(t ) for all t ∈ [0,1/2] (14.20)
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We consider two cases: 1. z̄0 ≤ b+ρ. Since y+ is the solution of the targeting equation
(14.19), we have from Construction 4.5 .1 and (14.20) that

b +ρ−γ< y+(1/2) =⇒ b +ρ−γ< z+(1/2) (14.21)

Moreover, since z+(0) = z̄0 ≤ b +ρ, we have that if z+(t ) ≥ b +ρ for some t ∈ (0,1/2)
then (14.17) gives z ′+(t ) = f+(t , z) ≤ δ. Therefore z+(t ) cannot grow at a rate bigger
than δ when its value exceeds b +ρ. This and (14.21) give

b +ρ−γ< z+(1/2) < b +ρ+δ/2

2. z̄0 > b+ρ. Since y+ is solution of the targeting equation (14.19), we have from
Construction 1 and (14.20) that

b +ρ < y+(t ) < z+(t ) for all t ∈ [0,1/2]

This condition then gives c
(
b +ρ− y+

)3
φ(t )+δ > c

(
b +ρ− z+

)3
φ(t )+δ which to-

gether with (14.19) implies

δ> z ′
+(t )− y ′

+(t ) for all t ∈ [0,1/2]

Integrating the last equation, we have

δ

2
> z+(1/2)− y+(1/2) =⇒ δ

2
+ y+(1/2) > z+(1/2)

The latter inequality plus the fact that b +ρ < y+(t ) < b +ρ+γ, where y+ is solution
of (14.19), yield that

b +ρ < z+(1/2) < b +ρ+γ+ δ

2

Now that we have studied both cases z̄0 ≤ b +ρ and z̄0 > b +ρ, we conclude that

b +ρ−γ< z+(1/2) < b +ρ+γ+ δ

2

A similar analysis can be performed for z−(1/2), ultimately yielding

|z̄(1/2)−b| < ρ+γ+ δ

2
(14.22)

14.5.7 Removing the θ j ’s from (14.15)

We must remove the θ j ’s in two places: in the function r and in the terms θ j (±sin2πt ).
Since in (14.15) we are using an extension f̃ : R→ R (actually, f̃ ≡ fM : R3 → R3, but
we consider the one-dimensional case for simplicity) of f : N→ N

(≡ψ :N3 →N3
)

which is robust to perturbations, we no longer need the corrections performed by r .
On the other hand we cannot use this technique to treat the terms θ j (±sin2πt ). We
need to substituteφ(t ) = θ j (sin2πt ) by an analytic (PIVP) function ζ :R→Rwith the
following ideal behavior:
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1. (i) ζ has period 1

2. (ii) ζ(t ) = 0 for t ∈ [1/2,1]

3. (iii) ζ(t ) ≥ 0 for t ∈ [0,1/2] and
∫ 1/2

0 ζ(t )d t > 0

Of course, conditions (ii) and (iii) are incompatible due to Proposition 2.5.4. Instead,
we approach ζ using a function ζε, where ε > 0. This function must satisfy the fol-
lowing conditions:

1. (ii)’ |ζε(t )| ≤ ε for t ∈ [1/2,1]

2. (iii)’ ζε(t ) ≥ 0 for t ∈ [0,1/2] and
∫ 1/2

0 ζε(t )d t > I > 0, where I is independent of
ε

Our idea to define such a function ζε is to use the function l2 introduced in
Proposition ?? Then define

ζε(t ) = l2(ϑ(t ),1/ε) (14.23)

where ε > 0 is the precision up to which ζε should approximate 0 in the interval
[1/2,1] and ϑ : R→ R is an elementary periodic function of period 1 satisfying the
following conditions: (a) |ϑ(t )| ≤ 1/4 for t ∈ [1/2,1]

(b) ϑ(t ) ≥ 3/4 for t ∈ (a,b) ⊆ (0,1/2). Notice that Proposition 4.2 .5 and (a) ensure
that |ζε(t )| < ε for t ∈ [1/2,1], i.e. they ensure (ii)’, and that Proposition 4.2 .5 and (b)
ensure |ζε(t )| > 1−ε for t ∈ (a,b) which gives

∫ 1/2
0 ζε(t ) ≥ (1−ε)(b−a) > 3(b−a)/4 for

ε < 1/4, which yields (b) (remark that for all (t , x) ∈ R2, l2(t , x) > 0 and thus ζε(t ) > 0
for all t ∈R). It is not difficult to see that one can pick ϑ :R→R as

ϑ(t ) = 1

2

(
sin2(2πt )+ sin(2πt )

)
(14.24)

since it satisfies all the conditions imposed above (e.g. a = 0.16 and b = 0.34). Hence,
θ j (sin2πt ) will be replaced by the PIVP function ζε(t ) = l2(ϑ(t ),1/ε), whereϑ is given
by (14.24). Similarly, θ j (−sin2πt ) will be replaced by the PIVP function ζε(−t )

14.5.8 Performing Construction 3 with PIVP functions

We are now ready to perform a simulation of an integer map with a system similar to
(14.15) but only using PIVP (and hence analytic) functions. Choose a targeting error
γ> 0 such that

2γ+δ/2 ≤ ε< 1/4 (14.25)

where δ= ∥∥g − fM
∥∥∞ < 1/2 is the maximum amplitude of the perturbations that can

affect our system of ODEs (we suppose, without loss of generality, that δ/2 < ε ) and
take the following system of ODEs

z ′
1 = c1

(
fM ◦σ[m] (z2)− z1

)3
ζε1 (t )

z ′
2 = c2

(
σ[n] (z1)− z2

)3
ζε2 (−t )

(14.26)

with initial conditions z1(0) = z2(0) = x̄0, where σ is the error-contracting function
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defined in (??) and c1,c2,m,n,ε1, and ε2 are still to be defined. We would like that
(14.26) satisfies the following property: on [0,1/2],∣∣z ′

2(t )
∣∣≤ γ (14.27)

This can be achieved by taking ε2 = γ/K , where K is a bound for c2
(
σ[n] (z1)− z2

)3
in

the interval [0,1]. Since |x|3 ≤ x4+1 for all x ∈R, we can take ε2 = γ/c2
(
σ[n] (z1)− z2

)−4+
γ/c2 Now notice that z2(0) has an error bounded by ε. This plus (14.27) and the fact
that z ′

2 might be subjected to perturbations of amplitude not exceeding δ, imply that

|z2(t )−x0| ≤ ε+ (δ+γ)/2 = η< 1/2 for t ∈ [0,1/2] (14.28)

Therefore, for m satisfying σ[m](η) < γ, we have that
∣∣σ[m] (z2(t ))−x0

∣∣ < γ for all t ∈
[0,1/2]. Hence, from the study of the perturbed targeting equation (14.16), where
φ(t ) = ζε1 (t ) and c1 is obtained accordingly, we have (takeρ = γ and consider (14.25))

∣∣z1(1/2)−ψ (x0)
∣∣< 2γ+ δ

2
≤ ε (14.29)

For the interval [1/2,1] the roles of z1 and z2 are switched. Similarly to the reasoning

done for z2 on [0,1/2], take ε1 = γ/c1
(

fM ◦σ[m] (z2)− z1
)−4 +γ/c1 so that on [0,1/2]∣∣z ′

1(t )
∣∣≤ γ

From this inequality, (14.29) and the fact that z ′
2 might be subjected to perturba-

tions of amplitude not exceeding δ, we get that∣∣z1(t )−ψ (x0)
∣∣≤ ε+ (δ+γ)/2 = η< 1/2 for t ∈ [1/2,1]

Therefore, for n = m, we have
∣∣σ[n] (z1(t ))−ψ (x0)

∣∣< γ for all t ∈ [1/2,1]. Hence, from
the study of the perturbed targeting equation (14.16), where φ(t ) = ζε2 (t ) and c2 is
obtained accordingly, we have∣∣z2(1)−ψ (x0)

∣∣< 2γ+ δ

2
≤ ε

Now we can repeat the procedure for intervals [1,2], [2,3], etc. to conclude that for
all j ∈N and for all t ∈ [ j , j +1/2]∣∣∣z1(t )−ψ[ j ] (x0)

∣∣∣≤ η
Moreover, z1 is defined as the solution of an ODE written in terms of PIVP functions.
As a corollary, we prove Theorem 14.6.

Proof:[of Theorem 14.6] From the previous proof, it follows that∣∣∣z1(t )−ψ[ j ] (x0)
∣∣∣≤ η< 1/2

Let k be an integer such that σ[k](η) < ε. Then the function y1 defined by y1 =
σ[k] (z1(t )) is also a PIVP function (see Theorem ?? ) satisfying∣∣∣y1(t )−ψ[ j ] (x0)

∣∣∣≤ ε
for all j ∈N and for all t ∈ [ j , j +1/2]. �
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14.5.9 Proof (sketch)

We adapt the construction in [Branicky, 1995] to simulate the iteration of the transi-
tion function of a TM with ODEs, using Theorem 14.2 to generalize Branicky’s con-
struction to analytic and robust flows. To iterate a function θ we use a pair of func-
tions to control the evolution of two “simulation” variables z1 and z2. Both simula-
tion variables have values close to x0 at t = 0. The first variable is iterated during half
of an unit period while the second remains approximately constant (its derivative is
kept close to zero by a control function that involves our error-contracting function
l2). Then, the first variable remains controlled during the following half unit period
of time and the second variable is brought up close to it. Therefore, at time t = 1 both
variables have values close to θ(x0). Theorem 14.2 shows that there exists some an-
alytic function robust to errors that simulates θ. This allow us to repeat the process
an arbitrary number of times, keeping the error under control.

We begin with some preliminary results. There exists an ODE whose solution
can be as close as desired to an arbitrary fixed value b ∈ R at t = 1/2, for any initial
condition at t = 0. Let ϕ : R→ R+ be some function. For an arbitrary error γ> 0 we
define a perturbed version, where we allow an error ρ ≥ 0 on b and a perturbation
term bounded by δ≥ 0 :

z ′ =−c(z −b(t ))3φ(t )+E(t ), with c ≥
(
2γ2

∫ 1/2

0
φ(t )d t

)−1

. (14.30)

where |b(b)−b| ≤ ρ and |E(t )| ≤ δ. Using the theory of ODEs, we can conclude
that |z( 1

2 )−b| < γ+ρ+δ/2 regardless to the initial condition at t = 0.
For the control functions mentioned above, we use s :R→ [−1/8,1] defined by

s(t ) = 1

2

(
sin2(2πt )+ (sin(2πt )

)
.

On s ∈ [0,1/2], s ranges between 0 and 1 and on [1/2,1], s ranges between −1/8
and 0.

We can now present the proof of the theorem. Let M be some Turing machine,
let fM be a map satisfying the conditions of Theorem 14.3 (replacing ε by γ), and let
x0 ∈R3 be an approximation, with error ε, of some initial configuration x0. Take also
δ< 1/2 and γ> 0 such that 2γ+δ/2 ≤ ε< 1/2 (we suppose, without loss of generality,
that δ/2 < ε). This condition will be needed later.

Consider the system of differential equations z ′ = gM (z, t ) given by

z ′
1 = c1(z1 − fM ◦σ[m](z2))3ϕ1(t , z1, z2),

z ′
2 = < c2(z2 −σ[n](z1))3ϕ2(t , z1, z2)

with initial conditions z1(0) = z2(0) = x0, where

ϕ1(t , z1, z2) = l2

(
s(t ),

c1

γ
(z1 − fM ◦σ[m](z2))4 + c1

γ
+10

)
ϕ2(t , z1, z2) = l2

(
s(−t ),

c2

γ
(z2 −σ[m](z1))4 + c2

γ
+10

)
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Because we want to show that the ODE z ′ = gM (z, t ) simulates M in a robust
manner, we also assume that an error of amplitude not exceeding δ is added to the
right side of the equations in (14.31). Our simulation variables are z1, z2 and the
control functions are ϕ1, ϕ2. Since ϕ1, ϕ2 are analytic they cannot be constant on
any open interval as in [Branicky, 1995]. However, our construction guarantees that
one of the control functions is kept close to zero, while the other one reaches a value
close to 1. For instance, on [0,1/2], |s(−t )| ≤ 1/8 and, by Lemma (14.4), ϕ2 is there-

fore less than γ(c2
∥∥z2 −σ[n](z1)

∥∥3
)−1. This guarantees that z ′

2 is sufficiently small on
[0,1/2] and, therefore, ∥∥∥∥z2(

1

2
)−x0

∥∥∥∥ < (γ+δ)/2+ε< 1

2

Hence, for m large enough
∥∥σ[m](z2)−x0

∥∥ < γ. Moreover, on some subinterval
of [0,1/2], s(t ) is close to 1 and therefore ϕ1 is also close to 1. Thus, the behavior of
z1 is given by (14.30) and ‖z1(1)−θ(x0)‖ < 2γ+δ/2 ≤ ε.

Now, for interval [1/2,1] the roles of z1 and z2 are switched. One concludes that
if n ∈N is chosen so that σ[n](5γ/2+δ) < γ, then

∥∥z2(1)− fM (x0)
∥∥∞< 2γ+δ/2 ≤ ε.

We can repeat this process for z1 and z2 on subsequent intervals, which shows that
for j ∈N, if t ∈ [ j , j +1] then

∥∥z2(t )−θ[ j ](x0)
∥∥ ≤ ε as claimed.

14.6 Discrete time simulation: Graça-Campagnolo-Buescu’s
Theorem 2

Theorem 14.8 (Graça-Campagnolo-Buescu’s Theorem 2 [Graça et al., 2005a])
θ :N3 →N3 be the transition function of a Turing machine M, under the encod-
ing γT M

N3 described above and let 0 < ε < 1/4. Then there is an analytic function

z :R4 →R3 with the following property:∥∥∥z(x0, j )−θ[ j ](x0)
∥∥∥ ≤ ε for all j ∈N.

14.6.1 Proof of Graça-Campagnolo-Buescu’s Theorem 2

Notice that all the functions we use in the proof of 14.5 above are analytic. Moreover,
note that if we apply the error-contracting function σ to z1 we can make the error
arbitrarily small. Therefore, Theorem 14.5 implies Theorem 14.8.

14.7 Continuous time simulation: γT M
(0,1)2

Now we use the previous construction to simulate a Turing machine on a compact
set X = (−1,1)3. This is a trick used in [Bournez et al., 2013], based on a change of
variable.
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If ξ is a solution of y ′ = gM (y) simulating M onR6, we can pick ξ̃= 2
π arctanξ (and

hence ξ= tan
(
ξ̃π
2

)
) as the corresponding simulation of M on (−1,1)6. In general

ξ̃′ = (
2

π
arctanξ)′ = 2

π

1

1+ξ2 ξ
′ = 2

π

1

1+ξ2 gM (ξ) =⇒ (14.31)

ξ̃′ = 2

π

1

1+ξ2 gM (ξ) = 2

π

1

1+ tan2
(
ξ̃π
2

) gM

(
tan

(
ξ̃π

2

))
= fM (ξ̃)

where

fM (x) = 2

π

1

1+ tan2
( xπ

2

) gM

(
tan

( xπ

2

))
.

Hence, the system y ′ = fM (y) simulates M on X , with input w coded byγT M
(0,1)2 . More-

over, robustness among states still exists, and the simulation of M can be carried out
if the states are not perturbed more than

ε̃= arctan(m +ε)−arctan(m) (14.32)

14.8 Discrete time simulation with a GPAC: γT M
N3

More generally, if Turing machine M has l tapes, then its transition function is de-
fined overN2l+1 and also admits a closed-form robust extension to R2l+1.

The following result is an adaptation of Theorem [?] from [Graça et al., 2005b]
and shows that GPACs can iterate the transition function of a given Turing machine.
It is stated in [Bournez et al., 2007]: basically, follow the idea above, and use the sta-
bility properties of GPAC generable functions to conclude that all invoved functions
correspond to functions computable by polynomial ordinary differential equations
with suitable initial values.

Proposition 14.1 ([Bournez et al., 2007, Graça et al., 2005b]) Suppose thatψM :
N2l+1 →N2l+1 is the transition function of a Turing machine M, under the γT M

N3 ,

x0 ∈ N2l+1 represents an initial configuration and ε,δ > 0 are constants satisfy-
ing ε+δ< 1/2. Then there is a computable polynomial p and some computable
value α ∈Rn

z ′ = p(z, t ), z(0) = (x̃0,α)

such that for all x̃0 ∈R2l+1 satisfying ‖x̃0 −x0‖∞ ≤ ε, one hasa∥∥∥z1(t )−ψ[ j ]
M (x0)

∥∥∥∞ ≤ δ.

for all j ∈N and for all t ∈ [ j , j +1/2].

aFor simplicity, we denote the solution z of the initial-value problem by (z1, z2), where z1 ∈R2l+1

and z2 ∈Rn .

If there exists some computable value α ∈Rn such that z ′ = p(z, t ) has the prop-
erties described in Proposition 14.1, we say that the GPAC z ′ = p(z, t ) simulates the
Turing machine M on input x.
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14.9 Simulating Type-2 machines with GPACs

From previoius results, we know how to simulate a Turing machine. However, the
error of the output is bounded by some fixed quantity ε> 0, whereas in Type-2 ma-
chines we would like that the output is given with error bounded by 2−n , where n
is one of the inputs of the machine. The next theorem shows how this can be done
with a GPAC.

Theorem 14.9 ([Bournez et al., 2007]) Let f : [a,b] → R be a computable func-
tion. Then there exists a GPAC and some index i such that if we set the initial
conditions (x, n̄) ∈ [a,b] ×R, where |n̄ −n| ≤ ε < 1/2, with n ∈ N, there exists
some T ≥ 0 such that the output yi of the GPAC satisfies |yi (t )− f (x)| ≤ 2−n for
all t ≥ T .

14.9.1 GPAC-computability

Actually, the following is true.

Theorem 14.10 (Bournez-Campagnolo-Graça-Hainry’s Theorem [Bournez et al., 2007])
Let a and b be computable reals. A function f : [a,b] → R is computable iff it is
GPAC-computable.



120 CHAPTER 14. SIMULATING TURING MACHINES BY ANALYTIC FUNCTIONS



Bibliography

[Antsaklis, 2000] Antsaklis, P. J., editor (2000). Proceedings of the IEEE, volume 88.

[Arnold, 1978] Arnold, V. I. (1978). Ordinary Differential Equations. MIT Press.

[Asarin, 1995] Asarin, E. (1995). Chaos and undecidabilty (draft). Avalaible in http:
//www.liafa.jussieu.fr/~asarin/.

[Asarin and Bouajjani, 2001] Asarin, E. and Bouajjani, A. (2001). Perturbed Turing
machines and hybrid systems. In Proceedings of the 16th Annual IEEE Symposium
on Logic in Computer Science (LICS-01), pages 269–278, Los Alamitos, CA. IEEE
Computer Society Press.

[Asarin and Maler, 1998] Asarin, E. and Maler, O. (1998). Achilles and the tortoise
climbing up the arithmetical hierarchy. Journal of Computer and System Sciences,
57(3):389–398.

[Asarin et al., 1995] Asarin, E., Maler, O., and Pnueli, A. (1995). Reachability analysis
of dynamical systems having piecewise-constant derivatives. Theoretical Com-
puter Science, 138(1):35–65.

[Asarin et al., 2001] Asarin, E., Schneider, G., and Yovine, S. (2001). On the decid-
ability of the reachability problem for planar differential inclusions. In Benedetto,
M. D. D. and Sangiovanni-Vincentelli, A. L., editors, Hybrid Systems: Computation
and Control, 4th International Workshop, HSCC 2001, Rome, Italy, March 28-30,
2001, Proceedings, volume 2034 of Lecture Notes in Computer Science, pages 89–
104. Springer.

[Bournez, 1999] Bournez, O. (1999). Complexité Algorithmique des Systèmes Dy-
namiques Continus et Hybrides. Phd thesis, Ecole Normale Supérieure de Lyon.

[Bournez et al., 2007] Bournez, O., Campagnolo, M. L., Graça, D. S., and Hainry, E.
(2007). Polynomial differential equations compute all real computable functions
on computable compact intervals. Journal of Complexity, 23(3):317–335.

[Bournez et al., 2013] Bournez, O., Graça, D. S., and Hainry, E. (2013). Computa-
tion with perturbed dynamical systems. Journal of Computer System Science,
79(5):714–724.

121

http://www.liafa.jussieu.fr/~asarin/
http://www.liafa.jussieu.fr/~asarin/


122 BIBLIOGRAPHY

[Branicky, 1995] Branicky, M. S. (1995). Universal computation and other capabili-
ties of hybrid and continuous dynamical systems. Theoretical Computer Science,
138(1):67–100.

[Brattka et al., 2008] Brattka, V., Hertling, P., and Weihrauch, K. (2008). New Com-
putational Paradigms. Changing Conceptions of What is Computable, chapter A
tutorial on computable analysis. Springer-Verlag, New York.

[Brockett, 1989] Brockett, R. W. (1989). Smooth dynamical systems which realize
arithmetical and logical operations. In Nijmeijer, H. and Schumacher, J. M., edi-
tors, Three Decades of Mathematical Systems Theory, volume 135 of Lecture Notes
in Computer Science, pages 19–30. Springer.

[Brockett, 1991] Brockett, R. W. (1991). Dynamical systems that sort lists, diago-
nalize matrices, and solve linear programming problems. Linear Algebra and its
Applications, 146:79–91.

[Bush, 1931] Bush, V. (1931). The differential analyzer. A new machine for solving
differential equations. J. Franklin Inst., 212:447–488.

[Campagnolo, 2001] Campagnolo, M. L. (2001). Computational complexity of real
valued recursive functions and analog circuits. PhD thesis, IST, Universidade Téc-
nica de Lisboa.

[Campagnolo et al., 2000a] Campagnolo, M. L., Moore, C., and Costa, J. F. (2000a).
Iteration, inequalities, and differentiability in analog computers. Journal of Com-
plexity, 16(4):642–660.

[Campagnolo et al., 2000b] Campagnolo, M. L., Moore, C., and Costa, J. F. (2000b).
Iteration, inequalities, and differentiability in analog computers. J. Complexity,
16(4):642–660.

[Ceraens and Viksna, 1996] Ceraens, K. and Viksna, J. (1996). Deciding reachabil-
ity for planar multi-polynomial systems. In Hybrid Systems III, volume 1066 of
Lecture Notes in Computer Science, page 389. Springer-Verlag.

[Coddington and Levinson, 1972] Coddington, E. E. and Levinson, N. (1972). The-
ory of Ordinary Differentiel Equations. McGraw-Hill.

[Filippov, 1988] Filippov, A. (1988). Differential equations with discontinuous right-
hand sides. Kluwer Academic Publishers.

[Graça, 2004] Graça, D. S. (2004). Some recent developments on Shannon’s General
Purpose Analog Computer. Mathematical Logic Quaterly, 50(4-5):473–485.

[Graça, 2007] Graça, D. S. (2007). Computability with Polynomial Differential Equa-
tions. PhD thesis, Instituto Superior Técnico.



BIBLIOGRAPHY 123

[Graça et al., 2005a] Graça, D. S., Campagnolo, M. L., and Buescu, J. (2005a). Ro-
bust simulations of Turing machines with analytic maps and flows. In Cooper, B.,
Loewe, B., and Torenvliet, L., editors, Proceedings of CiE’05, New Computational
Paradigms, volume 3526 of Lecture Notes in Computer Science, pages 169–179.
Springer-Verlag.

[Graça et al., 2005b] Graça, D. S., Campagnolo, M. L., and Buescu, J. (2005b). Robust
simulations of Turing machines with analytic maps and flows. In Cooper, S. B.,
Löwe, B., and Torenvliet, L., editors, CiE 2005: New Computational Paradigms,
LNCS 3526, pages 169–179. Springer.

[Graça et al., 2007] Graça, D. S., Campagnolo, M. L., and Buescu, J. (2007). Com-
putability with polynomial differential equations. Advances in Applied Mathe-
matics. To appear.

[Graça and Costa, 2003] Graça, D. S. and Costa, J. F. (2003). Analog computers and
recursive functions over the reals. Journal of Complexity, 19(5):644–664.

[Hirsch et al., 2003] Hirsch, M. W., Smale, S., and Devaney, R. (2003). Differential
Equations, Dynamical Systems, and an Introduction to Chaos. Elsevier Academic
Press.

[Jones, 1997] Jones, N. (1997). Computability and complexity, from a programming
perspective. MIT press.

[Ko, 1991] Ko, K.-I. (1991). Complexity Theory of Real Functions. Progress in Theo-
retical Computer Science. Birkhaüser, Boston.

[Koiran et al., 1994] Koiran, P., Cosnard, M., and Garzon, M. (1994). Computability
with low-dimensional dynamical systems. Theoretical Computer Science, 132(1-
2):113–128.

[Koiran and Moore, 1999] Koiran, P. and Moore, C. (1999). Closed-form analytic
maps in one and two dimensions can simulate universal Turing machines. Theo-
ret. Comput. Sci., 210(1):217–223.

[Kurganskyy and Potapov, 2005] Kurganskyy, O. and Potapov, I. (2005). Computa-
tion in one-dimensional piecewise maps and planar pseudo-billiard systems. In
Calude, C., Dinneen, M. J., Paun, G., Pérez-Jiménez, M. J., and Rozenberg, G.,
editors, Unconventional Computation, 4th International Conference, UC 2005,
Sevilla, Spain, October 3-7, 2005, Proceedings, volume 3699 of Lecture Notes in
Computer Science, pages 169–175. Springer.

[Lipshitz and Rubel, 1987] Lipshitz, L. and Rubel, L. A. (1987). A differentially alge-
braic replacement theorem, and analog computability. Proceedings of the Ameri-
can Mathematical Society, 99(2):367–372.

[Loff et al., 2007] Loff, B., Costa, J. F., and Mycka, J. (2007). Computability on reals,
infinite limits and differential equations. Applied Mathematics and Computation,
191(2):353–391. To appear.



124 BIBLIOGRAPHY

[Moore, 1990] Moore, C. (1990). Unpredictability and undecidability in dynamical
systems. Physical Review Letters, 64(20):2354–2357.

[Moore, 1991] Moore, C. (1991). Generalized shifts: unpredictability and undecid-
ability in dynamical systems. Nonlinearity, 4(3):199–230.

[Moore, 1998] Moore, C. (1998). Finite-dimensional analog computers: Flows,
maps, and recurrent neural networks. In Calude, C. S., Casti, J. L., and Dinneen,
M. J., editors, Unconventional Models of Computation (UMC’98). Springer.

[Odifreddi, 1992] Odifreddi, P. (1992). Classical Recursion Theory, volume 125 of
Studies in Logic and the foundations of mathematics. North-Holland.

[Pour-El, 1974] Pour-El, M. B. (1974). Abstract computability and its relations to the
general purpose analog computer. Trans. Amer. Math. Soc., 199:1–28.

[Pour-El and Richards, 1989] Pour-El, M. B. and Richards, J. I. (1989). Computability
in Analysis and Physics. Springer.

[Rogers Jr., 1987] Rogers Jr., H. (1987). Theory of Recursive Functions and Effective
Computability. MIT Press.

[Rubel, 1989] Rubel, L. A. (1989). A survey of transcendentally transcendental func-
tions. American Mathematical Monthly, 96(9):777–788.

[Ruohonen, 1993] Ruohonen, K. (1993). Undecidability of event detection for ODEs.
Journal of Information Processing and Cybernetics, 29:101–113.

[Ruohonen, 1997] Ruohonen, K. (1997). Undecidable event detection problems
for ODEs of dimension one and two. Theoretical Informatics and Applications,
31(1):67–79.

[Shannon, 1941] Shannon, C. E. (1941). Mathematical theory of the differential
analyser. Journal of Mathematics and Physics MIT, 20:337–354.

[Siegelmann and Sontag, 1995] Siegelmann, H. T. and Sontag, E. D. (1995). On the
computational power of neural nets. Journal of Computer and System Sciences,
50(1):132–150.


	Preliminaries
	  Richardson Theorem
	Formal Calculus: Richardson's Theorem
	Richardson 68's Theorem
	The theorem
	Proof Idea
	Richardson 68's Theorem (continued)
	Proof Idea

	Consequences
	Results in this spirit

	Richardson's Theorem
	From Integers to Reals
	From Equalities to Inequalities
	From Multivariate to Univariate
	Application to Simplification

	  Diophantine Equations
	Preliminaries
	Encoding of finite sequences
	Davis-Putnam-Robinson's theorem
	Matiyasevich's theorem
	On the impossibility of solving Diophantine equations

	  Basics about dynamical systems
	Ordinary Differential Equations
	Dynamical Systems
	Continuous Time Dynamical Systems
	Discrete Time Dynamical Systems


	  Dynamic Undecidability
	Static vs Dynamic Undecidability
	A provocative point of view
	Dynamic undecidability

	Some Dynamic Undecidability Results: Using a Discrete Time
	Some models
	The PAM Model
	The PCD Model

	The most fundamental model: Turing Machines
	Some Facts
	A Key Decision Problem
	Some Undecidability Results

	Proof method
	The involved notion of simulation
	Counter machines
	From Minsky to Turing Machines
	Using PCDs

	Extensions

	Some Dynamic Undecidability Results: Using a Continuous Time with Smooth Dynamics
	Discussion
	Some Dynamic Undecidability Results

	Space and Time Contraction for Continuous Time Systems
	Considering Dynamical Systems as Language Recognizers
	Time Contraction for PCD systems
	Zeno's Paradox
	Using Zeno's Paradox
	What can be computed?


	  The General Purpose Analog Computers. Differential Analyzers
	Differential Analysers
	The GPAC model
	GPAC and polynomomial Initial Value Problems
	Programming with the GPAC
	Exponential
	Linear operations
	Polynomials
	Damped Spring
	Lorenz's attractor


	  (GPAC) Generable Functions
	Notations
	Generable functions
	Unidimensional case
	Multidimensional case

	Stability properties
	Analyticity of generable functions
	Generable zoo
	Sign and rounding
	Absolute value, maximum and norm
	Switching functions

	GPAC approximation
	Generable fields
	Extended stability
	Generable real numbers


	  Simulating Turing Machines by Analytic Functions
	Coding of configurations of Turing machines
	Turing machines
	Coding a configuration: using integers.
	Coding a configuration: using integers (variant).
	Coding a configuration: using (0,1) and arctan.
	Coding a configuration: using [0,1]

	Discrete time simulation: TMN2
	Koiran-Moore 99's theorem

	Discrete time simulation: TMN3
	Graça-Campagnolo-Buescu's Theorem 1
	Some basic functions
	Another statement
	Proof of this statement
	Proof of Graça-Campagnolo-Buescu's Theorem 1

	Discrete time simulation: TM(0,1)2
	Continuous time simulation: TMN3
	Statement
	Iteration maps with ODEs
	Construction 2
	Construction 3
	Robust simulations of Turing machines with polynomial ODEs
	Studying the perturbed targeting equation
	Removing the j 's from (14.15)
	 Performing Construction 3 with PIVP functions
	Proof (sketch)

	Discrete time simulation: Graça-Campagnolo-Buescu's Theorem 2
	Proof of Graça-Campagnolo-Buescu's Theorem 2

	Continuous time simulation: TM(0,1)2
	Discrete time simulation with a GPAC: TMN3
	Simulating Type-2 machines with GPACs
	GPAC-computability



