
PACS Part 2, Lecture 4
Connectivity Threshold in ER Graphs

• p = log n
n is a threshold function for connectivity in Erdős–Rényi graphs

• If p ≤ λ log n
n with λ < 1, then there is an isolated vertex a.a.s.

• If p ≥ λ log n
n with λ > 1, then the graph is connected a.a.s.

Size of Connected Components
• we will study the maximum size of a connected component in the discon-

nected case

• the connected component C(u) of vertex u can be constructed in the
following manner

– We keep a set L of live vertices, a set N of neutral vertices, and a set
D of dead vertices.

– Initially, at time t = 0, we have L(0) = {u}, N(0) = V \ {u}, and
D(0) = 0.

– In every step t ≥ 1, we choose a live vertex w ∈ L(t − 1), move it
from L to D, and move all neutral neighbors of w from N to L.

– The process stops at the earliest time T with L(T ) = ∅.
– We then have C(u) = D(T ) and |D(T )| = T .

• Setting Z(t) = |N(t − 1)| − |N(t)|, we have the recurrence formulas

|L(t)| = |L(t − 1)| − 1 + Z(t)
|N(t)| = |N(t − 1)| − Z(t)
|D(t)| = t

with |L(0)| = 1, |N(0)| = n − 1, and |D(0)| = 0.

• In particular, |N(t)| = n − t − |L(t)| and

|L(t)| = 1 +
t∑

s=1
(Z(s) − 1) = 1 − t +

t∑
s=1

Z(s)

• Thus: Z(t) ∼ Bin
(
|N(t − 1)| , p

)
= Bin

(
n − t + 1 − |L(t − 1)| , p

)
Regime with Only Small Components

• set p = c/n

• since we always have |N(t − 1)| ≤ n, we can upper bound the size T of
the connected component by the length of a process Y (t) that satisfies the
recurrence for |L(t)| and in which Z(t) ∼ Bin(n, p)
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• that is, Y (t) = Y (t − 1) − 1 + Z(t) and Y (0) = 1, with the process stopping
when Y (T ) = 0

• denote by Tn,p the length of the original graph process and by T̃n,p the
length of the process Y (t)

• if c < 1, applying Chernoff’s bound, we have:

P(Tn,p > t) ≤ P(T̃n,p > t)
≤ P(Bin(nt, p) ≥ t)
= P(Bin(nt, p) ≥ ct(1 + (1 − c)/c))

≤ exp
(

−ct

3
(1 − c)2

c2

)

• choosing t = a log n with an appropriate constant a, this is ≤ 1/n2

• the union bound then implies that all connected components have size
≤ a log n with high probability

Birth of the Giant Component
• let now p = c/n with c > 1

• setting t− = b log n and t+ = n2/3, we define for a vertex v:

– v is small if |C(v)| ≤ t−

– v is big if |Lv(t)| ≥ c−1
2 t for all t− ≤ t ≤ t+

– v is bad if it is neither big nor small

• If there are no bad vertices, then there is at most one big component (of
super-logarithmic size).

Proof: For any pair (u, v) of big vertices, we have:

P
(
C(u) ̸= C(v)

)
≤ P

(
there are no edges between Lu(t+) and Lv(t+)

)
≤ (1 − p)(

c−1
2 t+)2

≤ exp
(

− c

n

(c − 1)2

4 n4/3
)

= exp
(

−c(c − 1)2

4 n1/3
)

= O(1/n3)

The union bound then shows that there is no such pair with high probability.

• If there are no bad vertices, then there is a giant component (of linear
size).

Proof: Let X be the number of small vertices. We show that

We have:

P
(
T̃n,p ≤ t−)

≤ P
(
Tn,p ≤ t−)

≤ P
(
T̃n−t−,p ≤ t−)
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We will later show that, for n ≥ ∞, the two outer terms converge to the
same quantity pe, which then shows EX = (pe + o(1))n. But first we will
study the variance of Ns and apply Chebyshev’s inequality.

Define the indicator variable Xu = 1 iff u is a small vertex. Then X =∑
u∈V Xu. We have

Var(X) ≤ EX2 = EX +
∑

v

P(Xv = 1)
∑
u ̸=v

P(Xu = 1 | Xv = 1)

and∑
u̸=v

P(Xu = 1 | Xv = 1) =
∑
u ̸=v

u∈C(v)

P(Xu = 1 | Xv = 1) +
∑
u̸=v

u̸∈C(v)

P(Xu = 1 | Xv = 1)

≤ t− + (pe + o(1))n

which gives

Var(X) ≤ EX + (pe + o(1))2n2 = EX + o
(
(EX)2)

Applying Chebyshev’s inequality with a = δEX gives

P (X/n ≥ pe (1 + δ)) ≤ 1
δ

(
1

EX
+ o(1)

)
= o(1)

We can even let δ → 0 very slowly.

• We left two tasks open: show that there are no bad vertices and the
convergence to pe

• We first show that there are no bad vertices with high probability:

Let v be a bad vertex. Then there is some t− < t ≤ t+ with Lv(t) < c−1
2 t.

We have

P
(

Lv(t) ≤ c − 1
2 t

)
≤ P

(
Bin

(
t

(
n − t − c − 1

2 t

)
,

c

n

)
≤ c − 1

2 t

)
≤ P

(
Bin

(
t

(
n − c + 1

2 t+
)

,
c

n

)
≤ c − 1

2 t

)
We have µ = ct

(
1 − c+1

2n t+)
. Choosing δ such that (1 − δ)µ = c+1

2 t, we
get δ = c−1

2c + o(1) as n → ∞ and, by Chernoff’s bound,

P
(

Lu(t) ≤ c − 1
2 t

)
≤ exp

(
−

(
(c − 1)2

8c
+ O(n−1/3)

)
t

)
and thus

P (u is bad) ≤ n2/3 exp
(

−
(

(c − 1)2

8c
+ O(n−1/3)

)
b log n

)
which is O(1/n) for an appropriate choice of b.
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Galton–Watson Process
• To show convergence of P(T̃n,p ≤ t−) and P(T̃n−t−,p ≤ t−) to pe, we

introduce a parallel version of the process: the Galton–Watson branching
process.

• There, we set Y0 = 1, and Yn+1 =
∑Yn

i=1 Z
(n)
i where the Z

(n)
i are i.i.d.

• Using the probability-generating function gX(s) = EsX for integer-valued
random variables X, we get gXn+1(s) = gZ(gXn(s)).

• We have P(Xn = 0) = gn
Z(0) and thus pe = gZ(pe) for the extinction

probability pe = P(∃n : Xn = 0).

• For a binomial random variable Z, we have gZ(s) =
(
(1 − p) + ps

)n.

• Both probability-generating functions
(

1 + c(s−1)
n

)n

and
(

1 + c(s−1)
n

)n−t−

converge to ec(1−s).

• Let pe be the nontrivial (s ̸= 1) solution of the equation s = ec(s−1). This
solution is unique and asmptotically equal to the extinction probability.

• Using the approximation |P(X ∈ A) − P(Y ∈ A)| ≤ np2 for all sets A of
nonnegative integers whenever X ∼ Bin(n, p) and X ∼ Poi(np), we can
show convergence of the finite-cutoff probabilities to pe.
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