PACS Part 2, Lecture 4

Connectivity Threshold in ER Graphs

o« p= 10% is a threshold function for connectivity in Erdés—Rényi graphs

o Ifp< )\10% with A < 1, then there is an isolated vertex a.a.s.

o If p> )\10% with A > 1, then the graph is connected a.a.s.

Size of Connected Components

e we will study the maximum size of a connected component in the discon-
nected case

¢ the connected component C(u) of vertex u can be constructed in the
following manner

— We keep a set L of live vertices, a set N of neutral vertices, and a set
D of dead vertices.

— Initially, at time ¢t = 0, we have L(0) = {u}, N(0) = V \ {u}, and
D(0) =0.

— In every step t > 1, we choose a live vertex w € L(t — 1), move it
from L to D, and move all neutral neighbors of w from N to L.

— The process stops at the earliest time T with L(T) = 0.

— We then have C(u) = D(T') and |D(T)| =T.

o Setting Z(t) = [N(t — 1)| — |N(t)|, we have the recurrence formulas
[L()] = |L(t = ] = 1+ Z(1)
IN@®)| = [N(t - 1] = 2(1)
|D(@)| =t
with |L(0)| = 1, [N(0)] = n — 1, and |D(0)| = 0.
o In particular, |[N(t)| =n —t — |L(t)| and

t t

LI =1+ (Z(s)—1)=1—t+>_ Z(s)

o Thus: Z(t) ~Bin(|N(t — 1), p) =Bin(n —t + 1 — [L(t — 1)|, p)

Regime with Only Small Components
e setp=c¢/n

« since we always have |[N(t — 1)| < n, we can upper bound the size T of
the connected component by the length of a process Y (t) that satisfies the
recurrence for |L(t)| and in which Z(t) ~ Bin(n, p)



e thatis, Y(¢t) =Y (t—1)— 1+ Z(t) and Y (0) = 1, with the process stopping
when Y(T) =0

e denote by T, , the length of the original graph process and by Tn,p the
length of the process Y (t)

e if ¢ < 1, applying Chernoff’s bound, we have:
P(Tpp > t) <P(Tp,, > )
< P(Bin(nt,p) > ¢)
= P(Bin(nt,p) > ct(1+ (1 —¢)/¢))
2

< exp (—C;(l —¢) )

c
« choosing t = alogn with an appropriate constant a, this is < 1/n?

N

e the union bound then implies that all connected components have size
< alogn with high probability

Birth of the Giant Component
e let now p =c¢/n with ¢ > 1
o setting ¢t~ = blogn and tT = n?/3, we define for a vertex v:
— vis small if |C(v)| <t~

— vis big if |L,(t)| > Gt forall t— <t < ¢+

— v is bad if it is neither big nor small

o If there are no bad vertices, then there is at most one big component (of
super-logarithmic size).

Proof: For any pair (u,v) of big vertices, we have:

P(C(u) # C(v)) < P(there are no edges between L, (t*) and L, (t"))
1,402 —1)2 .
=) < exp (0(041)714/3>

n

<(1-p)
— exp < C(C; 1)2n1/3) _ 0(1/n3)

The union bound then shows that there is no such pair with high probability.

o If there are no bad vertices, then there is a giant component (of linear
size).

Proof: Let X be the number of small vertices. We show that
We have:

P (Tn,p S ti) S P (Tn,p S ti) S P (Tnft*,p S ti)



We will later show that, for n > oo, the two outer terms converge to the
same quantity p., which then shows EX = (p. + o(1))n. But first we will
study the variance of Ny and apply Chebyshev’s inequality.

Define the indicator variable X, = 1 iff v is a small vertex. Then X =
> wey Xu. We have

Var(X) <EX? =EX + Y P(X,=1)> P(X,=1]X,=1)

uFv
and
YPX,=1]X,=1)= Y PX,=1]X,=1)+ » PX,=1]|X,=1)
uFv u#v uF#v

ueC(v) ugC(v)
<t + (pe +o(1))n

which gives

Var(X) < EX + (pe + 0(1))*n*> = EX + o ((EX)?)
Applying Chebyshev’s inequality with a = JEX gives

P(X/n > pe(1+9)) < % (Elx + 0(1)) =o(1)

We can even let § — 0 very slowly.

We left two tasks open: show that there are no bad vertices and the
convergence to pe

We first show that there are no bad vertices with high probability:

Let v be a bad vertex. Then there is some ¢t~ < ¢ < ¢¥ with L,(t) < <5t
We have

c—1 c—1 c c—1
< < i —t— —) <
(< S50 <r (i (i (oo 5) £ <50
§P<B1n<t<nc+lt+),c>§c_1t)

2 n 2

We have p1 = ct (1 — $E1¢T). Choosing d such that (1 —6)p = <1, we

get 0 = 51 4 0(1) as n — oo and, by Chernoff’s bound,

P (Lu(t) < c; 1t> < exp <— ((0;01)2 + O(n—1/3)) t)

and thus

(c—1)?

P (u is bad) < n?/3 exp (— < 5o

+ O(n‘1/3)> blogn)

which is O(1/n) for an appropriate choice of b.



Galton—Watson Process

To show convergence of P(T,,, < t~) and P(T,_,-, < t7) to p., we
introduce a parallel version of the process: the Galton—Watson branching
process.

There, we set Yy = 1, and Y, 1 = Zﬁl Zi(") where the ZZ.(") are i.i.d.

Using the probability-generating function gx(s) = Es* for integer-valued
random variables X, we get gx, ., (s) = 9z(gx,(5))-

We have P(X,, = 0) = ¢%(0) and thus p. = gz(pe) for the extinction
probability p. = P(3In: X,, = 0).
For a binomial random variable Z, we have gz(s) = ((1 —p) +ps)".

n n—t-
Both probability-generating functions (1 + M) and (1 + @)

n
converge to e“(175),

Let p. be the nontrivial (s # 1) solution of the equation s = e*(*~1. This
solution is unique and asmptotically equal to the extinction probability.

Using the approximation |P(X € A) — P(Y € A)| < np? for all sets A of
nonnegative integers whenever X ~ Bin(n,p) and X ~ Poi(np), we can
show convergence of the finite-cutoff probabilities to pe.
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