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Matrix measure

x(t) = F(t, (1)), x(0) = x°. (1)

solution denoted x(t, x°).
Let Q2 C R" be a convex forward invariant set

f(t .
J(t,x) = Of(t, x) Jacobian
Matrix measure p of matrix A € R"™*"
.11+ kA -1
A= lim ———
HA = g

(MPRI) Oct. 24, 2024 3/14



One can compute p(A) as

1
((A) = 5Amax(A +A")

or

f(x)—f(y)T(x —
WA= sup =) gx y)
X,y EQ xF#y ”X - y”
Condition: 3XA >0

u(J(t,x)) < =A<0 VxeQ, t>0. (2)

If (2) is true, one says that Equ. (1) is contractive.
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Basic property
If (1) is contractive! , then:
I1x(£,x%) = (£, y°) || < [Ix° = y®[le ™. (3)

This means that 2 trajectories contract to each other

NB: = names for related notions:

One-Sided Lipschitz constant <0

Input-to-State Stability (ISS),

@ incremental exponential stability,

—f monotone (or coercive),

1G. Soderlind, “The logarithmic norm. History and modern theory”, BIT Num. Maths,
2006.
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Extensions

Notion of contraction extends via2

e weighted norms || - || (i.e ||z|| = z" Qz with Q symmetric)

e bounded perturbation: x = f(x) +p  with p € P (x of) bounded
real intervals

@ stochastic ODE with dx = df (x) + ocdw
@ transverse contraction,

e partial differential equations

2Lohmiller-Slotine: “On Contraction Analysis for Non-linear Systems”. Autom. 34,
1998. Cf: Giesl et al.: “Review on contraction analysis and computation of contraction
metrics”, 2022
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Classical use of contraction

@ proof of convergence towards a unique stable equilibrium x*

e control synthesis: e.g., find a control u(t) such that the solution of
x = f(x, u(t)) converge towards a reference trajectory

e find bassin of attraction of periodic systems (orbital stability)

e prove entrainment/synchrony for ODE of the form x = f(x,w(t))3

3Lohmiller-Slotine: “On Contraction Analysis for Non-linear Systems”. Autom. 34,
1998. Cf: Aminzare-Sontag: “Contraction methods for nonlinear systems: a brief
introduction and some open problems”’, CDC 2014.
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Historical use of contraction: stability of numerical
integration (A-stability)

Theorem*
Let A€ C9%9. The matrix exponential is bounded by

||etAH < etHAl >0,

—» continuous-time solution e/ is exp. stable around 0 if u[A] < 0.
In particular:

p[A] <0 = Jle® <1 Vvt>o0.

4G. Dahlquist, “Stability and error bounds in the numerical integration of ODEs”, 1958
(cf. G. Séderlind, “The logarithmic norm. History and modern theory”, 2006
T



Desoer-Haneda's Result (1972)

Theorem

Let X" (resp. y") be the backward Euler approximation at step n for initial
value %° (resp. §°). Then

17 = 7"l < (1 = hulA) "I = 501l + ph

for some p> 0 independent of h.

Proof. Local truncation error £, = x"T1 — x" — hx"+1.
By Taylor's formula at order 2:

1
l€nll = S %I (u)]| < p

for some p > 0 and u € [nh, (n+ 1)h].

but Th. gives no way to prove convergence to 0 for constant step size h



error

Novel use of contraction: upper bound on Euler's method

K = %K 4 hF(RY).

=] = - = o



One-step reachability [Le Cognt De Vuyst Chamoin F., SNR17]

Theorem

Let: x! = x(h,x%), %! = %0+ hf(X°). Then:
[x0 = &0 <00 = |Ix! —%[ <61 where

201 £( 20V [|2 1/2
5l — ((50)2e)\h+ L ||f)(\>2< )i <h2+2—h+£(1—e)‘h)>) <0

201 £( 012 1/2
= (e CUEDE (o 202 o )"




JEMO—2OID) = (o) £, 50 ~20)
= (fitate) —f,-(rc:mf,-{r(:n —1H@).x(0) —20))
= () ~ £0).x(0) ~20)) + (f500) — £06°)x0) ~3(0))
< {a(0) ~ f00)x0) ~50) + 1£5(30) ~ &) [ x0) ~x0) -

The last expression has been obtained using the Cauchy-Schwarz inequality. Using (H1) and (3], we
have
Aglle(e) = ()| + fE(0) = SE) ) lx(e) =20

Aglie(e) =201 + Ly 1%(0) = 21 (1) (1)
Ajlpr(e) —x(e)]| +f—;fIIJG(f°)IIILr(f} —x(r)]l-

1d 2
PALORE LD

[FA A P

Using (@) and a Young inequality, we then have
12 0k)—0ID) < A~ 20) I+ Cothett) )
1
< Al ~x0IF +Cor 5 (it 50 + )

forall e = 0.

® Inthe case A; < (k
For 1 == 0, we choose o > 0 such that Cjrat = —4, ie. @ =—C—R.'_"‘—. It follows, for all ¢ € [0,7]:

1d A; 2 Gt A (C;-'J
7 gz )= (r}llz}fflh(r)—ﬂ-')ll — 5 = 5 Ixl) - % X0~

We thus get:

()OI < WO~ + 74 (’ (i e”))



Advantages: limited wrapping effect + optimizable step h

Figure: Wrapping effect with Interval Arithmetic (left) vs Euler ring (right)

Figure: Evolution of the upper bound § on the Euler discretization error
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