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Chapter 1

Preliminaries

These are Course Notes for MPRI Course 2.33.1.
Theories of Computation.

There are highly based on:

• [Brattka, 2005] and [Brattka et al., 2008b]

• [Weihrauch, 2000]

• [Ko, 1991]

Any comment (even about orthography) welcome: send an email to bournez@lix.polytechnique.fr
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Chapter 3

The notion of Computable Real

3.1 Historical origins

The following sentence can be found in the paper from Turing in 1936 introducing
Turing machines [Turing, 1936]:

“The “computable” numbers may be described briefly as the real num-
bers whose expressions as a decimal are calculable by a finite means.”

Hence, it can be stated that the ideas of recursive analysis’s approach are as old
as computability theory and Turing machines.

3.2 Classical Computability

3.2.1 Turing machines

We assume the reader familiar with Turing machines.

The elementary operations a machine can perform are:

1. move some head on working tape one position to the left or right;

2. move some head on input tape or output tape right;

3. write a symbol a ∈Σ on the position under the head;

4. compare the symbol under some head with the symbol a ∈Σ.

11



12 CHAPTER 3. THE NOTION OF COMPUTABLE REAL

In other words, we assume the output tape to be write-only (the head cannot
move to the left).

3.2.2 Basic notions from Computability Theory

• A function f : N→ N, or f : N→ Q, or f : Q→ N, or f : Q→ Q is said com-
putable, if there exists a Turing machine which can transfer each number n ∈
N, encoded in the input tape, into the corresponding function value f (n),
which is to be encoded on the output tape, in finite time.

• A set A ⊂N or A ⊂Q is said computable or recursive, if its characteristic func-
tion χA :N→N or χA :Q→N is computable.

• A set A ⊂N or A ⊂Q is said computably enumerable, or recursively enumerable
if it is empty or if there exists a computable function f : N→ N or f : N→ Q

respectively such that A = r ang e( f ).

3.3 Computable Real Numbers

3.3.1 Definition

Definition 3.1 A real number is called computable if there exists a Turing ma-
chine wich can produce its decimal expansion (without input).

3.3.2 Characterization

Theorem 3.1 Let x ∈R. The following are equivalent:

1. x is a computable real number.

2. there exists a Turing machine wich can produce its binary expansion (with-
out input).

3. there exists a computable sequence of rational numbers (qn)n∈N which
converges rapidly to x, i.e |qi −x| < 2−i .

4. There exists a computable sequence of rational shrinking intervals enclos-
ing only x: that is to say, there exists two computable sequences (an)n∈N
and (bn)n∈Nof rational numbers with

a0 < ·· · < an < an+1 < . . . x · · · < bn+1 < bn < ·· · < b0

with limn→∞ an = limn→∞ bn .

5. {q ∈Q : q < x} is a recursive (= decidable) set.

6. there exists a recursive set A ⊂N and an integer z such that x = z+∑
i∈A 2−i−1.
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7. x is rational (then it has a finite continued fraction expansion) or x admits
a computable continued fraction expansion, i.e. there is some integer z
and some computable f :N→N such that

x = z + 1

f (0)+ 1
f (1)+ 1

f (2)+ 1
f (3)+···

.

3.3.3 Proof that 5. ⇔ 3.

• We sketch the proof of {q ∈Q : q < x} is a recursive set iff ∃ (qn)n∈N with |qi −
x| < 2−i .

– ⇒. For each i determine some qi ∈Q with qi < x and not qi +2−i−1 < x.
These properties are decidable and a suitable i always exists. It follows
that qi < x ≤ qi +2−i−1 and thus |qi −x| < 2−i .

– ⇐.

1. Case x ∈Q. It is easy to decide q < x for a given q ∈Q.

2. Case x 6∈Q. For given q ∈Q, we determine some i ∈N such that

|qi −x| < 2−i and |qi −q | > 2−i .

Such an i exists because x 6∈Q. Then q < x iff q < qi , which is decid-
able.

• Remark: the proof of ⇐ contains a non-constructive case distinction that can-
not be removed !!

3.3.4 Proof that 2. ⇔ 3.

We sketch the proof of 2. ⇔ 3.

• ⇒. Assume that x has a binary expansion that is computed by some Turing
machine. Let qn be the rational number that one obtains by replacing in this
expansion all digits from the (n + 2)th digit after the binary point by zeros.
Then sequence (qn)n∈N is a computable sequence of rational numbers that
converges rapidly to x.

• ⇐.

1. Case x happens to be of the form: integer divided by a power of two.
Then it has a binary expansion in which only finitely many digits are dif-
ferent from zero.

Obviously, such a binary expansion can be produced by a Turing ma-
chine.
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2. Case x not of this form. Then x has a uniquely determined binary ex-
pansion. Let (qn)n∈N be a computable sequence of rational numbers
converging rapidly to x.

We which to show that one can compute the binary expansion of x:

– How to determine the binary expansion in front of the binary point:

* since x is not an integer, there is an i such that [qi −2−i , qi +2−i ]
does not contain an integer: by computing sufficiently many qi

for i = 0,1,2, . . . , one can find such a i .

* Then the binary expansion in front of the binary point of x is
equal to the the binary expansion in front of the binary point of
qi .

– How to determine the binary digit number n+1 in the binary expan-
sion of x, assuming one knows the binary expansion in front of the
binary point, and all digits 1, 2, . . . , n after the binary point:

* since x is not an integer divided by 2n+1, there is an i sich that
[qi −2−i , qi +2−i ] does not contain an integer divided by 2n+1:
by computing sufficiently many qi for i = 0,1,2, . . . , one can find
such a i .

* Then the binary expansion x and of qi are identical in front of
the binary point, and for digits 1, 2, . . . , n, n +1 after the binary
point.

• Remark: the proof of ⇐ contains a non-constructive case distinction that can-
not be removed !!

3.4 The Field of Computable Reals

Theorem 3.2 (Rice54) The setRc of computable reals is a real algebraically closed
field.

It means that it is a subfield of the field R of real numbers, and it contains the
real zeros of any polynomials whose coefficients are computable real numbers.

• The field Rc contains all particular real numbers we ever met in analysis (e.g.p
2,π,e, etc.).

• Q⊂A⊂Rc ⊂R (A denotes the set of algebraic numbers).

• Rc is countable.

• Rc is not complete.
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Remark 3.1 In the Russian school (ex. Markov, Sanin, Kushner, Aberth) one fo-
cus on computability of functions f :Rc →Rc .

Proposition 3.1 The set of computable real numbers is countably infinite.

Proof: It is infinite since it contains all rational numbers. It is countable since for
every computable real numbers, there is a Turing machine that computes its binary
expansion, and there are countably many Turing machines. �

Proposition 3.2 The set of computable real numbers is not complete.

Proof: Any real numbers, also a non-computable one, is the limit of sequence of
rational numbers, hence the limit of a sequence of computable real numbers. �

3.5 Weaker Notions of Computable Reals

3.5.1 Left/Right computable real numbers

Definition 3.2 A real number x is left-computable if it satisfies one (and then
all) of the conditions of the following proposition. A real number x is right-
computable if −x is right computable.

Proposition 3.3 For a real number x, the following are equivalent:

• There exists a computable strictly increasing sequence of rational numbers
with limit x.

• There exists a computable nondecreasing sequence of rational numbers
with limit x.

• The set {q ∈Q|q < x} is a recursively enumerable subset ofQ.

3.5.2 Relations with Previous Notion

Proposition 3.4 A real number is computable iff it is left computable and right
computable.

3.6 Teaser

Theorem 3.3 The function f :R→R, f (x) = x+x+x is not (ρ10,ρ10)-computable.
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Proof:[of Theorem 4.1] Assume for the sake of contradiction that there is a Turing
machine that given a ρ10-name of an arbitrary real x, produces a ρ10-name of 3x.

Feed 0.3333. . . to the machine. The machine has to produce either 1.000000. . .
or 0.999999. . . .

Assume it produces 0.999999. . . : the machine will write the first 0 after finitely
many steps, hence after reading only a finite number of symbols of its input tape,
say after reading at most the prefix 0.3n , for some n ∈N. But, then the output of the
machine on input 0.3n4444. . . should not start by 0 (because 3∗ρ10(0.3n4444. . . ) >
1,) whereas the machine will output 0. Contradiction.

If it produces 1.00000. . . , one reaches at a similar contradiction.
�



Chapter 4

The Notion of Computable
Function over the Reals

4.1 Computable Functions over the Integers, Rationals,
etc.

4.1.1 Back to Computability Theory

We extend the notions of Section 3.2.2.

We will also consider computability notions on Nn and Qm for n,m > 0 as basic,
in the same spirit as in previous chapter and in particular in the spirit of Section
3.2.2.

For completeness sake, and in order to avoid misunderstandings, we formally in-
troduce computability of functions on or between these sets via the Turing machine
model.

Via the Turing machine model one defines computability on functions on Σ∗,
where Σ is a finite alphabet.

To talk about computability over Nn and Qm , we need to represent elements of
these spaces by strings, that is to say, to fix notations of these spaces.

4.1.2 Notations

Formally:

Definition 4.1 A notation of a set X , is a surjective function ν : Σ∗ → X , where
Σ∗ is the set of finite words over alphabet Σ.

17
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4.1.3 Fixing Notations for Usual Objects

Integers

For X =N, we can fix νN :Σ∗ →N to be the usual binary notation of natural numbers.

Pairs, Triples, etc.

Fix a bijection < ., . > fromN2 toN: consider for example

< x, y >= (x + y)(x + y +1)

2
+ y.

This yields a bijection < ., ., . . . , . > fromNk+1 →N for k ≥ 1 defined recursively by

< x1, x2, · · · , xk+1 >=<< x1, x2, · · · , xk >, xk+1 > .

Tuple of integers

For X =Nn , we can fix

νNn (w) = (x1, · · · , xn) iff νN(w) =< x1, · · · , xn > .

Rational Numbers

Consider surjection νQ :N→Q defined by

νQ (< i , j ,k >) = i − j

k +1
.

For X =Qn (possibly with n = 1), we can fix

νQn (w) = (q1, · · · , qn) iff qi = νQ (νNn (w)i ).

Words

Finally, for X =Σ∗, consider νΣ∗ to be the identity.

4.1.4 Computable Function over Classical Discrete Spaces

Definition 4.2 Consider X and Y to be any of the spaces Σ∗,Nn , orQm for some
n,m ≥ 1.

A function f : X → Y is said computable if there exists a Turing machine that
on input w ∈Σ∗, never stops if w 6∈ dom( f νX ), and that stops after finitely many
steps with some output v such that

νY (v) = f (νX (w))

if w ∈ dom( f νX ).

We will also use the notions “decidable” and “computably enumerable” for sub-
sets of Σ∗,Nn , orQm in the usual sense.
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4.2 Computability over infinite words

4.2.1 Why talking about infinite words ?

We want to formalize the notion of computable function for a function f :R→R.
We can not build a notation for R, as R is not countable.
We come to the notion of representation, where elements are represented by

infinite words, instead of finite words.

4.2.2 Formalizing Computability over Infinite words

Definition 4.3 A Turing machine M computes a function F : Σω → Σω, if on
input p ∈Σω, the following holds true:

• if p ∈ dom(F ), then M computes infinitely long, and in the long run, it
writes the infinite function value F (p) on the write-only output tape.

• if p 6∈ dom(F ), then M does not produce an infinite output.

4.3 Computable Functions over the Reals

4.3.1 Representations

Definition 4.4 A representation of a set X is a surjective function δ : Σω → X ,
where Σω denotes the infinite words over alphabet Σ.

When δ(p) = x, p is called a name of x.

4.3.2 Particular Representations

Decimal Representation

The usual decimal representation ρ10 is the representation such that ρ10(1.414. . . ) =p
2.

Cauchy Representation
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Definition 4.5 (Cauchy representation) The Cauchy representation ρ : Σω →
R of the real numbers is defined by

ρ(w0#w1#w2 . . . ) = x iff |x −νQ(wi )| < 2−i

for all i ∈N.
In other words, a real number x is represented by a (word coding a) sequence

of rational numbers converging rapidly to x.

Left, Right Representation

Definition 4.6 (Representation ρ<) The representation ρ< : Σω → R is defined
by

ρ<(w0#w1#w2 . . . ) = x iff {νQ(wi )|i ∈N} = {q ∈Q|q < x}.

Definition 4.7 (Representation ρ>) The representation ρ> : Σω → R is defined
by

ρ>(w0#w1#w2 . . . ) = x iff {νQ(wi )|i ∈N} = {q ∈Q|q > x}.

4.3.3 Combining representations

Definition 4.8 • Let δ : Σω → X and δ′ : Σω → X ′ be representations of X
and X ′ respectively.

Then one can consider a representation of X ×X ′ defined by

[δ,δ′](< p, q >) = (x, y) iff δ(p) = x and δ′(q) = y,

where < p, q >= p(0)q(0)p(1)q(1) . . . .

• For k ≥ 1, the representation δk of X k is defined recursively by δ1 = δ,
δk+1 = [δk ,δ].

• Sometimes, we will need to combine notations and representations: given
ν : Σ∗ → X and δ : Σω → X ′ be notation of X and a representation of X ′,
then one can consider a representation of X ×X ′ defined by

[ν,δ](0a10a20. . .0an1p) = (x, x ′) iff δ(p) = x ′ and ν(a1a2 . . . an) = x.

4.3.4 Computable functions

Definition 4.9 Let f : X → Y be some function, and let δX : Σω → X and δY :
Σω→ Y be representations.

Function f is said to be (δX ,δY )-computable if there exists a computable
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function F :Σω→Σω such that

δY F (p) = f (δX (p)) for all p ∈ dom( f δX ).

(can be seen as a commutative diagram).

4.3.5 Convention/Definition

Definition 4.10 A function f :Rk →R is called computable if it is (ρk ,ρ)-computable.

4.3.6 Remark

Definition 4.11 Letδ be a representation of X . A point x ∈ X is saidδ-computable
if there exists a computable p ∈Σω (i.e. a p produced as the output of Turing ma-
chines working over infinite words without input) such that δ(p) = x.

Corollary 4.1 The computable real numbers coincide with the ρ-computable
real numbers.

4.3.7 Motivation: Multiplication by 3

We indeed consider the Cauchy’s representation instead of the (possibly) more nat-
ural (usual) decimal representation, because of the following observation:

Theorem 4.1 The function f :R→R, f (x) = x+x+x is not (ρ10,ρ10)-computable.

Corollary 4.2 Addition, multiplication are not computable with respect to the
decimal representation.

Whereas

Theorem 4.2 The function f : R→ R, f (x) = x + x + x is computable (that is to
say (ρ,ρ)-computable.

Proof:[of Theorem 4.1] Assume for the sake of contradiction that there is a Turing
machine that given a ρ10-name of an arbitrary real x, produces a ρ10-name of 3x.

Feed 0.3333. . . to the machine. The machine has to produce either 1.000000. . .
or 0.999999. . . .

Assume it produces 0.999999. . . : the machine will write the first 0 after finitely
many steps, hence after reading only a finite number of symbols of its input tape,
say after reading at most the prefix 0.3n , for some n ∈N. But, then the output of the
machine on input 0.3n4444. . . should not start by 0 (because 3∗ρ10(0.3n4444. . . ) >
1,) whereas the machine will output 0. Contradiction.

If it produces 1.00000. . . , one reaches at a similar contradiction.
�
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4.3.8 Philosophical Remark

One may think that the decimal representation is more natural. However, as basic
functions like addition or multiplications are not computable with respect to this
representation, one then can think:

• either the Turing machine model is not appropriate for real numbers in prin-
ciple.

• or the model has to be modified such that addition or multiplication become
computable

• This can be achieved by allowing two-way output tapes. However, then the
model is not closed under composition and the output after finite time would
be completely useless

• Alternatively, one must replace the decimal representation by a more suitable
representation. This is historically what has been done in Recursive Analysis,
following the correction of Turing in 1937 about his paper from 1936.

4.4 Computability of Common functions

4.4.1 Computable Functions

Theorem 4.3 The following functions are computable

• The arithmetic operations +,−, ., :⊂R×R→R.

• The absolute value function abs :R→R, x →|x|.
• The functions min,max :R×R→R.

• The constant functions R→R, x → c with c ∈Rc .

• The projections pri :Rn →R, (x1, · · · , xn) → xi .

• All polynomials p :Rn →Rwith computable coefficients.

• The exponential function and the trigonometric functions exp,sin,cos :
R→R.

• The square root function p and the logarithm function log on their natu-
ral domains.

Proof: We sketch the proof that addition f : R2 → R is computable: given two
sequences (qn)n∈N and (rn)n∈N of rational numbers that rapidly converge to x and
y respectively, we can compute the sequence (pn)n∈N defined by pn = qn+1 + rn+1.
This sequence converges rapidly to x + y :

|x + y −pn | ≤ |x −qn+1|+ |y − rn+1| ≤ 2−(n+1) +2−(n+1) = 2∗2−n−1 = 2−n .
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Since addition can be computed on Turing machines, it follows that f is com-
putable as well. �

Remark 4.1 Addition requires only a uniform lookahead of one step that does
not depend on the input. For functions tat are not uniformly continuous, such
as multiplication, the lookahead may depend on the input.

Proof: We sketch the proof that multiplication f : R2 → R is computable: given
two sequences (qn)n∈N and (rn)n∈N of rational numbers that rapidly converge to x
and y respectively, we can compute the sequence (pn)n∈N defined by pn = qn+m ∗
rn+m . This sequence converges rapidly to x + y , if m is well chosen.

|x ∗ y −pn | ≤ |x|∗ |y − rn+m |+ |rn+m ||x −qn+m |.
Indeed, take m such that |x| ≤ |q0|+1 ≤ 2m−1 and |rn+m | ≤ |r0|+1 ≤ 2m−1.
Then

|x ∗ y −pn | ≤ 2m−1−n−m +2m−1−n−m = 2n .

Since multiplication can be computed on Turing machines, it follows that f is
computable as well. �

4.4.2 Non-computable basic functions

We will see in next chapter that a computable function over the reals must be con-
tinuous. This yields non-computability of functions like the characteristic function
of any set, or of the sign function.
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Chapter 5

Computability and Continuity

5.1 Computability implies Continuity for computations
over infinite words

5.1.1 Cantor’s topology

Cantor’s space is the metric space Σω over some finite alphabet Σ, endowed with the
metric dC defined by

dC (p, q) =
{

2−min{i |p(i )6=q(i )} if p 6= q
0 otherwise

Let τC be the topology induced by the metric dC . The topological space (Σω,dC )
is also called Cantor’s space.

The set {wΣω|w ∈ Σ∗} is a basis of the topology τC : that is to say, any open set is
a union of sets of this form.

(graphical representation as a tree).

5.1.2 Computable implies Continuous

Theorem 5.1 Each computable function F :Σω→Σω is continuous with respect
to the Cantor topology.

Proof: Let M be a Turing machine which compute F . Let p ∈ dom(F ) and let v
be a prefix of q = F (p).

After a number t of steps machine M with input p has just written v on the out-
put tape. At this time, machine M has read at most a finite prefix w of p: we obtain
F (wΣω) ⊂ vΣω.

In other words, F is continuous. �

25
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5.2 Computability implies Continuity for computations
over reals

5.2.1 Reasoning about the commutative diagram

This implies that each computable function f : R → R must be continuous (with
respect to the usual (=Euclidean) topology).

In short:

• we must have commutative diagram f ρ = ρF , and since ρ is continuous, f ρ =
ρF also.

• since ρ has an open1 and surjective restriction, it follows that f itself is con-
tinuous.

Remark:

• Since

ρ(w0#w1#. . .#wl #Σω) =∩l
i=0B(νQ(wi ),2−i )

ρ indeed maps (relatively) open sets to open sets.

• Since

ρ(w#w#. . .#w#Σω) = B(νQ(w),2−i )

(where there is i times w in the expression) ρ is indeed continuous.

5.2.2 Effective continuity

Let B(x,ε) := {y ∈Rn |d(x, y) < ε} be the ball of center x and of radius ε.
We fix a total numbering B n of all open rational balls in Rn by:

B n(< i1, . . . , in , j ,k >) := B((νQ(i1), . . . ,νQ(in)),
j +1

k +1
).

Definition 5.1 (Effective continuity) A function f : Rn → R is effectively con-
tinuous if there is a computably enumerable subset S ⊂Nwith the following two
properties.

1. For any < i , j >∈ S, f (B n(i )) ⊆ B 1( j );

2. For any x ∈ dom( f ), and any ε > 0, there is some < i , j >∈ S such that
x ∈ B n(i ) such that the radius of B 1( j ) is at most as large as ε.

1the image of an open set is an open set.
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Theorem 5.2 A function f :Rn →R is computable iff it is effectively continuous.

Proof: For simplicity, we will do the proof only for the case n = 1.
Sense ⇒: Assume that f is effectively continuous. Then given a ρ-name of a

point x ∈ dom( f ), one can compute f (x) with arbitrary precision using an enumer-
ation of S. Thus f is computable.

Sense ⇐:

• Assume that f is computable. Then a Turing machine given any k and any
name p of x ∈ dom( f ), computes a rational q with f (x) ∈ B(q,2−k ).

Fix k. The machine does so after reading at most a finite prefix of p of the form
w0#w1#. . .#wl #.

Then U :=∩l
i=0B(νQ (wi ),2−i ) is an open neighborhood of x, and any point in

this neighborhood has a ρ-name starting with the prefix.

Thus given a name starting with the prefix of any point in U , the machine will
produce the same output q . This implies that f (U ) ⊂ B(qk ,2−k ).

• This implies that f is continuous (Take any neighborhood V of y = f (x). There
must exists some k with B(qk ,2−k ) ⊂V . Consider respective U , we have f (U ) ⊂
B(qk ,2−k ) ⊂V .).

• f is even effectively continuous: enumerate systematically all prefixes of ρ-
names of real numbers and tests the Turing machines on them, to build a set
S.

�

5.2.3 Consequence

This shows that even a function as simple as the sign function (si g n(x) := 0 if x < 0,
1 otherwise) is not computable.

5.3 (Recursive Analysis’) Church Turing’s Thesis for Real
Number Functions

• Discontinuous functions f :R→R cannot be computable.

• They might be “simple to describe” (a computable point in some function
space), or computable in some weaker sense (e.g. lower semi-computable)

• but not computably evaluable with arbitrary precision

(dessin)

(Recursive Analysis’) Church Turing’s Thesis for Real Number Functions: A
function f : Rn → R is computable, if and only if it can be evaluated on a physical
computer with arbitrary given precision.

Hence, it must be continuous. . .
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5.4 Some consequences

This implies that there is no Turing machine, that given x, decide whether x = 0 or
x 6= 0: We mean, given some ρ-name of x, decide if it corresponds to x = 0, or x 6= 0.
Indeed the function that sends x to 0 if x 6= 0, or 1 if x = 0 is not continuous, hence
not computable.

Notice however, that if we know that x 6= 0, we can decide whether x > 0 or x < 0.
Indeed, given some quickly converging Cauchy sequence (qn)n∈N, we have x > 0 iff
there exists some rank n0 with qn0 − 2−n0 > 0 (call this property (1)). And x < 0 iff
there exists some rank n0 with qn0 + 2−n0 < 0 (call this property (2)). Now, as we
know that x 6= 0, there must exist n0 such that either property (1) holds (in which
case, x > 0), or there must exist n0 such that either property (2) holds (in which case,
x < 0): indeed, consider n0 such that 0 < 2−n0 < |x|.

This provides an algorithm: increase n0 until either property (1) holds, or prop-
erty (2) holds.

Of course, this algorithm never halts if(f) x = 0.

5.5 A characterization of computable functions: mod-
ulus of continuity

5.5.1 Modulus of continuity

Definition 5.2 Let f : [a,b] → R be a continuous function on [a,b]. Then, a
function m :N→N is said to be a modulus function of f on [a,b] iff for all n ∈N
and all x, y ∈ [a,b], we have

|x − y | ≤ 2−m(n) ⇒| f (x)− f (y)| ≤ 2−n .

The proof of the following theorem uses the Heine-Borel covering theorem that
states that each open covering of a closed and bounded set A ⊆ R has a finite sub-
covering. That is, for any collection C of open sets such that A ⊆⋃

{S|S ∈C }, there is
a finite collection {S1, ...,Sn} of sets in C such that A ⊆⋃n

i=1 Si .

Theorem 5.3 If f : [a,b] → R is computable on [a,b] then f is continuous on
[a,b]; furthermore, f has a computable modulus function m on [a,b].

A dyadic rational number d is a rational number that has a finite binary expan-
sion; that is, d = m/2n for some integers m, n, n ≥ 0. Let D be the set of all dyadic
rational numbers. The binary expansion of a dyadic rational is its natural finite rep-
resentation.

We denote byDn the set of all dyadic rationals d with a representation s of pr ec(s) =
n: that is, Dn = {m ·2−n |m ∈Z}.

Proof:
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We write BEx for the binary expansion of x:

x = BEx (−1) · (BEx (0)+
∞∑

i=1
BEx (i )2−i )

We write bx for the standard Cauchy function for x: That is to say

bx (n) = BEx (−1) · (BEx (0)+
n∑

i=1
BEx (i )2−i )

Observe that we have: if |y −bx (n)| < 2−n then |y −bx (k)| < 2−k for all k ≤ n.
Let M be a Turing machine computing f and n a fixed integer. For each x ∈ [a,b],

consider the computation of M on input bx : it outputs some sequence rapidly con-
verging Cauchy sequence (qn)n∈N. Write M bx (n) for qn . Let kx = max{k|bx (k) is queried in the computation M bx (n+
2)}.

Then, we claim that for all y ∈ [a,b], |y−bx (kx )| < 2−kx implies that | f (y)− f (x)| ≤
2−(n+1): this comes from the fact that the computation on such an y must be the
same as the computation on bx at least up to the moment where M bx (n+2) is output,
as such an y has a representation starting exactly as bx , and the computation is never
reading more than kx rationals of its input.

Let `x = bx (kx )−2−kx and rx = bx (kx )+2−kx . Then, y, z ∈ (`x ,rx )∩ [a,b] implies
| f (y)− f (z)| ≤ 2−(n+1). (Both f (y) and f (z) differ from M bx (n+2) by at most 2−(n+2).)

Consider the open covering{(`x ,rx )|x ∈ [a,b]} for [a,b]. By the Heine-Borel The-
orem, there must be a finite covering {(`xi ,rxi )|i = 1, . . . , t } for [a,b]. Let m(n) =
max{kxi |i = 1, . . . , t }. We claim that for any y, z ∈ [a,b], |y−z| ≤ 2−m(n) implies | f (y)−
f (z)| ≤ 2−n .

This can be verified as follows. If |y − z| ≤ 2−m(n) and y < z, then either `xi <
y < z < rxi for some i = 1, . . . , t ,or `xi < y ≤ `x j < rxi ≤ z < rx j for some i , j = 1, . . . , t .

In the first case, | f (y)− f (z)| ≤ 2−(n+1). In the second case, | f (y)− f (z)| ≤ | f (y)−
f (u)|+ | f (u)− f (z)| ≤ 2−n , where u is a real number in (`x j ,rxi ). This shows that the
function m(n) is a modulus function for f .

Finally we check that m is a computable function. Note that in the above proof,
for each i = 1, . . . , t , if we let di = bxi (kxi ) = (`xi + rxi )/2, then di ∈ D and the output
of machine M on input bdi is exactly the same as that with input bxi for the first n+2
output rationals.

In other words, we have `di = `xi and rdi = rxi . It implies that m(n) can be com-
puted as the maximum of kdi , i = 1, . . . , t . This suggests the following algorithm for
m(n):

• for i = 1 to ∞ do

– if [a,b] ⊆⋃
di∈Di∩[a,b](`d ,rd )

* then halt and output m(n) = max{kd |d ∈Di ∩ [a,b]}.

By the above discussion, there exists an integer i such that {(`d ,rd )|d ∈Di∩[a,b]}
covers [a,b]. So, this algorithm always halts. Furthermore, when it halts in the i th
iteration with the output m(n), {(`d ,rd )|d ∈Di ∩ [a,b]} must be a covering for [a,b].
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As proved above, this implies that for all y, z ∈ [a,b], |y −z| ≤ 2−m(n) ⇒| f (y)− f (z)| ≤
2−n . So the algorithm computes a computable modulus function for f. �

The above gives us immediately our first characterization of computable real
functions.

Corollary 5.1 A real function f : [a,b] →R is computable iff there exist two com-
putable functions m :N→N and ψ : (Q∩ [a,b])×N→Q such that

1. m is a modulus function for f

2. and for all q ∈Q∩ [a,b] and all n ∈N, |ψ(q,n)− f (q)| ≤ 2−n .

Proof: The “only if” part follows immediately from previous theorem.
For the “if” part, assume that m and ψ satisfy 1. and 2. A Turing machine M

computing f works as follows: Given some quickly converging sequence (qn)n rep-
resenting x, one can output some quickly converging sequence (rn)n representing
f (x) as follows: Given n, compute m(n + 1), then read q = qm(n+1). Then output
ψ(q,n +1).

As we know that |q−x| < 2−m(n+1), we have | f (q)− f (x)| < 2−(n+1) . Hence | f (x)−
ψ(q,n +1)| ≤ 2−n . �

5.5.2 What about functions over non-compact domains?

Although the above characterizations are stated for functions with a compact do-
main, they can easily be extended to functions defined on R by extending the notion
of uniform modulus of continuity to a local modulus of continuity.

We state such an extension of above characterization

Corollary 5.2 A function f : R→ R is computable iff there exist two recursive
functions m :N×N→N and ψ : D ×N→ D such that

• for all k,n ∈N and all x, y ∈ [−k,k], |x−y | ≤ 2−m(k,n) implies | f (x)− f (y)| ≤
2−n , and

• for all d ∈ D and all n ∈N, |ψ(d ,n)− f (d)| ≤ 2−n .
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Computability for More General
Spaces

We will need to consider more general spaces, such as the class of continuous func-
tions over [0,1], denoted by C [0,1].

Actually, for such a space, we can generalize what we did for reals that we repre-
sented by Cauchy sequences of Rationals. We will here consider functions as Cauchy
sequences of polynomial functions.

In full generality, we are using the notion of computable metric space.

Definition 6.1 A triple (X ,d ,α) is called a computable metric space if

1. d : X ×X →R is a metric on X

2. α :N→ X is a sequence such that the set {α(n)|n ∈N} is dense in X

3. d ◦ (α×α) :N2 →R is a computable (double) sequence in R.

Definition 6.2 Let (X ,d ,α) be a computable metric space. Then we define the
Cauchy representation δX :Σω→ X by

δX (01n0+101n1+101n2+1 . . . ) = lim
i→∞

α(ni ).

for any sequence (ni )i∈N such that (α(ni ))i∈N converges rapidly: we say that a
sequence (xi )i∈N converges rapidly , if d(xi , limn→∞ xn) < 2−i .

Examples

• (Rn ,d ,αRn ) with the Euclidean metric d(x, y) =
√∑n

i=1 |xi − yi |2 and the stan-

dard numbering αRn ofQn defined by

αRn (< i1, . . . , in >) = (νQ(i1), . . . ,νQ(in)).

is a computable metric space.
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• (C [0,1],dC ,αC ) is a computable metric space, with

dC ( f , g ) := || f − g || = sup
x∈[0,1]

| f (x)− g (x)|.

and some standard numbering αC ofQ[x], for instance

αC (< k,< i0, . . . , ik >>) =
k∑

j=0
νQ(i j )x j .

The following can be proved:

Theorem 6.1 1. The function ( f , x) → f (x) is ([δC [0,1],ρ[0,1]],ρ)-computable
(where ρ[0,1] is the restriction of ρ to names of real numbers in [0,1])

2. The computable points of δC [0,1] are exactly the computable functions f :
[0,1] →R.
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Computability for Subsets

7.1 First considerations

Over N, not only computable functions are of fundamental important, but also ef-
fective notions for sets, like the notions of computable (= recursive, decidable) set,
and recursively enumerable (=computably enumerable, semi-decidable) sets.

Over N, a subset A ⊂ Nn is decidable if its characteristic function χA : N→ N is
computable.

Let us first to translate this idea to subsets of Rn :

Definition 7.1 Let X be a set, and δX be a representation of X .
A subset A ⊂ X is said to δX -decidable if its characteristic functionχA : X →R

is (δX ,ρ)-computable.
The (ρn ,ρ)-decidable subsets of Rn will be called decidable

Proposition 7.1 The only decidable subsets of Rn are ; and Rn .

Proof: The characteristic functions of ; and Rn are the constant functions 0 and
1 and are computable.

The characteristic function of any other subset is discontinuous and hence non-
computable. �

Is the problem with the ρ-representation?

Proposition 7.2 There is no representation δ : Σω → R of the real numbers such
that any of the tests =, <, ≤ are decidable with respect to δ: that is to say, such
that any of the following subsets of R2 is δ2-decidable:

{(x, y)| ∈R2|x = y}

{(x, y)| ∈R2|x < y}

33
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{(x, y)| ∈R2|x ≤ y}

Proof: We do the proof only for =.
Assume that there is a representation δ such that = is decidable. Consider an

arbitrary real number x and a δ-name p of x. On input < p, p > after a finite time,
the Turing machine outputs 1. It does so after reading at most a finite prefix of its
input, say at most 2n symbols of < p, p >. Then for any name q that starts with
u := p(0)p(1) . . . p(n), the machine on input < p, q > will output 1.

This implies that δ(p) = δ(q) = x for any δ-name q starting with the prefix u.
Since there are countably many strings in Σ∗, and δ is surjective, this implies that R
is countable.

Contradiction. �

7.2 Better considerations: Defining computable subsets

7.2.1 Definitions

Consider a non-empty closed subset A ⊂ Rn . The distance function dA : Rn → R

defined by
dA(x) := inf

y∈A
d(x, y),

can be considered as a “smooth” version of the characteristic function of A.
(dessin).

Definition 7.2 A closed subset A ⊂ Rn is said computable or recursive if either
it is empty or dA is computable.

Definition 7.3 An open subset A ⊂Rn is said computable or recursive if its com-
plement (which is a closed set) is computable.

7.2.2 This extends the notions overNn

Proposition 7.3 A subset A ⊂ Nm is decidable if and only if it is computable
when considered as a closed subset of Rm .

Proof: Idea for ⇐ (for m = 1).
Observe that for any integer n ∈N, dA(n) is 0 if n ∈ A, or ≥ 1 for n 6∈ A.
Given n ∈N, if for a k we know that

1. dA(n) < 1−2−k then n ∈ A.

2. dA(n) > 1/2+2−k then n ∈N− A

Increase k until one of the two conditions above hold. �
Examples of computable subsets.
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1. {x} is computable iff x is a computable point.

2.
{(x, y) ∈R2|x = y}

{(x, y) ∈R2|x < y}

{(x, y) ∈R2|x ≤ y}

are computable

3. The open ball B(x,ε) and the corresponding closed ball are computable, when
x and ε are computable.

4. [a,b] is computable when a and b are.

5. For any total function f : Rn → R the graph {(x1, . . . , xn , y)|y = f (x1, . . . , xn) is
computable when f is computable.

7.2.3 Natural interpretation

The idea is that a closed set is computable if one can plot pixel of it at arbitrary
precision.

(dessin).
(Computability on Z can be reduced to computability on N by ν(2n) := n, and

ν(2n +1) =−(n +1)).

Proposition 7.4 For a closed subset A ⊂ Rk , the following conditions are equiv-
alent.

1. A is computable.

2. There exists a computable function f :N×Zk →N with r ang e( f ) ⊂ {0,1}
such that for all n ∈N, z ∈Zk ,

f (n, z) =


1 if dA( z
2n ) < 2−n

0 if dA( z
2n ) > 2.2−n

0 or 1 otherwise

7.3 Better considerations: Defining recursively enumer-
able subsets / Co-re closed sets

7.3.1 Back to classical computability

For subsets ofNn the following is well-known:

Proposition 7.5 The following are equivalent:

1. A ⊂N is recursively enumerable.
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2. there is some computable f :N→Nwith dom( f ) = A.

3. A is empty or there is some total computable function f :N→N such that
A = r ang e( f ).

co-recusively enumerable means “whose complement is” recursively-enumerable.
The idea is to generalize these to subsets of Rn . The generalization of condition

2. leads to point 1. in the proposition below. The generalization of condition 3. leads
to points 2. and 3. in proposition below.

7.3.2 For subsets of Rn

Definition 7.4 Let X be a set with representation δ : Σω → X . A set U ⊂ X is
called δ-recursively enumerable (= δ-computably enumerable) if a Turing ma-
chine, given any arbitrary δ-name p of an arbitrary element x ∈ X , halts after
finitely many steps if and only if x ∈U .

Proposition 7.6 Let U ⊂ Rn be open and let A := Rn −U be its (closed) comple-
ment.

The following conditions are equivalent:

1. U is ρn-computably enumerable

2. U =⋃
(q,ε)∈S B(q,ε) for some recursively enumerable set S ⊂Qn ×Q+ (here:

Q+ =Q∩ {q > 0})

3. The set {(q,ε) ∈Qn ×Q+|B(q,ε) ⊂U } is recursively enumerable

4. A = f −1({0}) for some total computable function f :Rn →R

5. The function χA : Rn → R is lower semicomputable: i.e. it is (ρn ,ρ<)-
computable.

6. Either A =; or the function dA :Rn →R is lower semicomputable.

Proof: 6. ⇒ 3: Follows from dA(x) > ε iff A∩B(x,ε) =;.
2. ⇒ 4: if U =⋃

(xi ,ri ) B(xi ,ri ) then

f (x) :=
∞∑

i=0

max(0,ri −d(xi , x))

ri
2−i−1

defines a computable function f :Rn →Rwith A = f −1({0}). �

Definition 7.5 If one (an then all) of the conditions above are true, U is said
computably enumerable open, and A is said co-computably enumerable closed.
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7.3.3 Intuition/Digression

Let A ⊂Rn be a closed set. Then A is co-recursively enumerable if

{(q,ε) ∈Qn ×Q+|B(q,ε)∩ A =;}

is recursively enumerable.
(dessin).
This corresponds to “negative information” on the set A.

Definition 7.6 The upper Fell topology on A := {A ⊂Rn |A is closed } is generated
by the subbase which consists of the sets {A ∈ A |A ∩K = ;} for all compact sets
K ⊂Rn .

7.4 Better considerations: Defining recursively enumer-
able subsets / Re closed sets

There is another generalization of computable enumerability:

Proposition 7.7 Let A ⊂Rn be closed.
The following conditions are equivalent:

1. The set {(q,ε) ∈Qn ×Q+|B(q,ε)∩ A 6= ;} is recursively enumerable.

2. Either A = ; or there is a computable sequence (xi )i∈N of points xi ∈ Rn

such that A is the closure of the set {xi |i ∈N}.

3. Either A =; or the function dA :Rn →R is upper semicomputable.

Definition 7.7 If one (an then all) of the conditions above are true, A is said
computably enumerable closed and U is said co-computably enumerable open.

Proposition 7.8 1. A subset A ⊂ Nn is computably enumerable (considered
as a subset ofNn) if and only if it is computably enumerable when consid-
ered as a closed subset of Rn .

2. A subset A ⊂ Nn is co-computably enumerable (considered as a subset of
Nn) if and only if it is co-computably enumerable when considered as a
closed subset of Rn .

Proposition 7.9 An open or closed subset ofRn is computable iff it is computably
enumerable and co-computably enumerable.

Proof: Follows from the fact that lower semi-computable + upper-semicomputable
= computable. �
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7.4.1 Intuition/Digression

Let A ⊂Rn be a closed set. Then A is recursively enumerable if

{(q,ε) ∈Qn ×Q+|B(q,ε)∩ A 6= ;}

is recursively enumerable.
(dessin).
This corresponds to “positive information” on the set A.

Definition 7.8 The lower Fell topology on A := {A ⊂Rn |A is closed } is generated
by the subbase which consists of the sets {A ∈A |A∩U 6= ;} for all open U ⊂Rn .

7.5 Closure properties

Proposition 7.10 Let A and B be closed subset of Rn .

• If A and B are co-ce closed, so are A∪B and A∩B.

• If A and B are ce closed, so are A∪B.

• If A and B are computable, so is A∪B.

Proof:

1. Let f , g : Rn → R be computable functions such that A = f −1({0}) and B =
g−1({0}). Then A ∪B = ( f ∗ g )−1({0}) and A ∩B = (| f | + |g |)−1({0}), and f ∗ g
and | f |+ |g | are computable functions.

2. A closed set is c.e. closed iff the set of open rational balls intersecting the set
can be enumerated effectively. Now note that any open (rational) ball intersect
A∪B iff it intersects at least one of A and B .

3. Follows from other statements.

�

7.6 Some open questions

Recall the Mandelbrot set M : M = {c ∈C| all numbers of the sequence (zi )i∈N defined
by z0 := 0, and zi+1 := z2

i + c satisfy |zi | ≤ 2}.
The following questions are open

1. Is the Mandelbrot set computable?

2. Is the interior of the Mandelbrot set c.e. open?

The (famous) hyperbolicity conjecture says that a certain subset of interior of the
Mandelbrot set is actually equal to interior of the Mandelbrot set.
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Proposition 7.11 (Hertling 2005) If the hyperbolicity conjecture is true, then the
answer to both questions above is yes.
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Chapter 8

Intermediate Value Theorem

8.1 Introduction

Theorem 8.1 For each continuous function f : [0,1] → R with f (0)∗ f (1) < 0
there exists a point x ∈ [0,1] with f (x) = 0.

Does there exist a computable version of this theorem?
In general, we can distinguish two computable forms of such theorems:

1. non-uniform: for any suitable computable f , there exists a computable x.

2. uniform: given some suitable continuous f , we can compute a zero x.

In the uniform case, we can distinguish two subcases:

1. functional: there exists a computable (continuous) function Z : C [0,1] → R

such that Z ( f ) is a zero of f for all f ∈ F .

2. multi-valued: there exist a multi-valued computable (continuous) function
Z : C [0,1]⇒R such that for all f ∈ F there exists an x ∈ Z ( f ) and all such x are
zeroes of f .

Here F ⊂ { f ∈C [0,1]| f (0) f (1) < 0}.

8.2 Trisection method

Theorem 8.2 There exists an algorithm which determines a zero for all given
computable (hence continuous) function f : [0,1] →Rwith f (0)∗ f (1) < 0 which
have exactly one zero.

Proof: In the classical bissection method, function values are compared with 0.
As we saw that this cannot be done in finite time, we use a trisection method.

41
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We start with a0 := 0 and d0 := 1. Now, assume that we have computed two num-
bers ai ,di ∈ [0,1] with di − ai = (2/3)i such that f (ai )∗ f (di ) < 0 (this is true for
i = 0).

In parallel, we compute the two values f (ai )∗ f (ai + 2/3(di − ai )) and f (ai +
1/3(di − ai ))∗ f (di ) with higher and higher precision until one of them turns out
to be smaller than 0 (at least one of them must be smaller than 0). If this is the
first one, we set ai+1 := ai ,di+1 := ai +2/3(di −ai ). If this is the second one, we set
ai+1 := ai +1/3(di −ai ),di+1 := di . �

Remark 8.1 If we used a bissection method, we would cut [ai ,di ] in half, and
test the sign of f (zi ) in zi = (ai +di )/2: if f (zi ) 6= 0, (by considering higher and
higher precision), we could ultimately know which case of f (zi ) > 0 or f (zi ) < 0
holds; the point is that it may happen than f (zi ) = 0, and the algorithm would
never stop.

The trick here is that we cannot have simultaneously f (bi ) = 0 and f (ci ) = 0
for bi = ai +1/3(di −ai ) and ci = ai +2/3(di −ai ). Hence, the algorithm always
terminate.

8.3 Stronger statement

We actually proved a stronger statement: there exists a corresponding computable
functional: Z : C [0,1] →R.

Theorem 8.3 There is a Turing machine which, given a δC [0,1]-name of some
function f with f (0)∗ f (1) < 0 and such that f −1({0}) does not contain an inter-
val computes a (ρ-name of) a zero of f .

Proof: We use a trick similar to the trisection method, with a slight generaliza-
tion.

First, we note that if f is such a function, and a < d are numbers in [0,1] with
f (a)∗ f (d) < 0, then for any n ∈N there are rational numbers b and c with a ≤ b <
c ≤ d with c −b ≤ 2−n and f (b)∗ f (c) < 0.

Assume that a δC [0,1] of such a function f is given: similarly to the trisection
algorithm, we start with a0 := 0 and d0 := 1, and once two rational numbers ai and
di with ai < di and di −ai ≤ 2−i , and f (ai )∗ f (di ) < 0 are found, it searches for two
rational numbers ai+1,di+1 with ai ≤ ai+1 < di+1 ≤ di with di+1 −ai+1 ≤ 2−i−1 with
f (ai+1)∗ f (di+1) < 0. �

Remark 8.2 Actually the algorithm returns possibly different zeros of f depend-
ing on the δC [0,1] name of f given to the algorithm.

8.4 Unsolvability in the general case
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Theorem 8.4 There is no general algorithm which determines a zero for any
continuous function f : [0,1] →Rwith f (0)∗ f (1) < 0.

Definition 8.1 Assume δX is a representation of X , and δY a representation of
Y . A multi-valued function f : X ⇒ Y is called (δX ,δY )-computable if there
exists a computable function F : Σω → Σω such that δY F (p) ∈ f δ(p) for all p ∈
dom( f δX ).

Analogously, f is called (δX ,δY )-continuous if there exists a continuous F
with the above property.

(dessin).
Actually, the above theorem follows from the following observation:
Z : C [0,1]⇒R defined by dom(Z ) := { f ∈C [0,1]| f (0)∗ f (1) < 0}, Z ( f ) = f −1({0},

is not (δC [0,1],ρ)-continuous.
Proof: For the sake of contradiction, assume that Z is (δC [0,1],ρ)-continuous.

Consider the continuous piecewise linear function hy : [0,1] → R with breakpoints
(0,−1), (1/3, y), (2/3, y), (1,1), for arbitrary y ∈ R. Given a ρ-name of y , one can
compute a δC [0,1]-name of hy . If Z were (δC [0,1],ρ)-continuous, then there would
also be a continuous function mapping any ρ-name of y to a ρ-name of a zero hy .

The unique zero hy for y < 0 is greater than 2/3, and smaller than 1/3 for y > 0.
Hence, given a ρ-name of y = 0, a continuous function producing a ρ-name of a zero
of hy would have to produce a name of a number ≥ 2/3 and at the same time ≤ 1/3.
Impossible. �

8.5 Non-uniform version

Theorem 8.5 Every computable function f : [0,1] →Rwith f (0)∗ f (1) < 0 has a
computable zero.

Proof: We distinguish two cases:

1. the set f −1({0}) does not contain an interval. Then given a computable name
of f , the algorithm of Theorem 8.3 will produce a computable name of a zero
of f . Hence, this zero is computable.

2. the set f −1({0}) contains an interval. Then this interval contains a rational,
hence a computable number.

�



44 CHAPTER 8. INTERMEDIATE VALUE THEOREM



Chapter 9

Complexity

We want to talk not only about computability of reals, or functions over the reals,
but also about their complexity.

We restrict here to time complexity.

9.1 Measuring Complexity

The time complexity of a Turing machine M computing a function f : Σω → Σω

should describe the asymptotic behavior of M . One would like to measure the num-
ber of time steps in dependency of the:

• output precision

• size of the input

• while keeping track of the input lookahead.

(dessin).
For some (good) reasons, the Cauchy representation is not suitable to define

properly time complexity: basically, this is not a good idea to use the Cauchy rep-
resentation, because for example for any rational number one easily construct ar-
bitrarily long ρ names of it. This has the consequence (using a padding argument)
that for any computable real x, there is a Cauchy name for x computable in linear
time. This doesn’t really make sense.

One uses the better signed digit representation: the idea is that 1 represents −1.

Definition 9.1 The signed digit representation ρsd :Σω→R is defined by:

ρsd (an an−1 . . . a0.a−1a−2 . . . ) :=
−∞∑
i=n

ai .2i .

45
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for all sequences ai ∈ {1,0,1} and n ≥ 1 (with the additional properties that an 6=
0, if n ≥ 0, and an an−1 6∈ {11,11} if n ≥ 1), where we interpret −1 as −1.

We will write Di for the set of rational numbers of the form m/2i for some pos-
itive or negative integer m, and for some non-negative integer i : D = ⋃∞

i=0 Di is the
set of Dyadic rationals.

In contrast to the binary representation, the signed digit representation is redun-
dant in a symmetric way.

Definition 9.2 Let t :N→N be a total function. A real number x is computable
in time O (t ) if there are constant c and a Turing machine that, without ever
stopping, produces a ρsd -name of x and, after c ∗ t (n)+ c steps, has written at
least the prefix containing n digits after the binary point.

Theorem 9.1 The set of polynomial time computable real numbers forms a real
algebraically closed field.

Definition 9.3 A Turing machine M computes a real function f : R→ R on a
domain K ⊂ R in time t : N→ N with input lookahead l : N→ N if and only if,
for any p ∈ ρ−1

sd (K ):

1. ρsd fM (p) = f ρsd (p): i.e. M computes f upon input p.

2. with at most c.t (n)+ c time steps (for some constant c).

3. and with reading at most l (n) input symbols after the binary point of p.

in order to produce the n-th output symbol.

9.2 Basic functions

Theorem 9.2 For all the following functions f : Rm → R with domain K ⊂ Rm ,
there exists a Turing machine M which computes f in time t with input looka-
head l :

function domain time lookahead
f (x1, x2, . . . , xn) K t (n) l (n)
−x1 R n n
x1 +x2 [−1,1]× [−1,1] n n + c
x1 ∗x2 [−1,1]× [−1,1] n logn loglogn 2n + c
x1 ∗x2 [−1,1]× [−1,1] n log2 n loglogn n + c
1/x1 [7/8,2] n logn loglogn 2n + c
exp,sin,cos [−1,1] n log2 n loglogn n+c
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9.3 Roots of Functions

Theorem 9.3 For any computable real x ∈ [0,1], there exists a polynomial time
computable function f : [0,1] → R such that f is strictly increasing, f (0) < 0 <
f (1), and f −1({0}) = {x}.

By considering x to be computable, but not-computable in polynomial time, we
get:

Corollary 9.1 There exists a polynomial time computable function f : [0,1] →R

such that f is strictly increasing, with f (0) < 0 < f (1), but f −1({0}) is not polyno-
mial time computable.

Proof:[of Theorem] Consider x to be computable and let (qn)n∈N be some se-
quence rapidly converging to x: |x − qn | < 2−n . Let t : N→ N that bounds the run
time to compute n 7→ qn .

We will define a sequence ( fn)n∈N of simple piecewise linear functions such that
fn → f , for some function f , and fn(x) = 0 for all n.

The basic idea is to construct f such that for a real number y , which is close to x,
and a small integer n, the machine M f computing f at precision 2−n can consider
the value of f to be 0 on y . Only when the input integer n becomes so large that
there is enough time to distinguish y from x, M f will assign a non-zero value to its
approximation of f (y) at precision 2−n , and make f (y) 6= f (x).

To do so, we define two sequences {dk }, and {ek } of rationals.

d1 = 0, e1 = 1.

and for k ≥ 2,

dk = max{dk−1, qk −2−k } and ek = min{ek−1, qk +2−k }.

We get the following facts:

• 0 = d1 ≤ d2 ≤ d3 ≤ ·· · ≤ dk < x < ek ≤ ·· · ≤ e1 = 1.

• dk and ek are computable in time O(s(k)) where s(k) =∑k
i=1 t (i ). For the sake

of simplicity, we assume that s(k) ≥ k +1.

Then we define { fn}n as follows:

• If s(k) < n < s(k +1), we set fn = fs(k).

• if n = s(k), k ≥ 1, we consider fn simple piecewise linear with ≤ 2k break
points

d1,d2, . . . ,dk ,ek , . . . ,e2,e1

such that for all breakpoint y ∈ {di ,ei |1 ≤ i ≤ k},

fn(y) =


−2−(s(i )+1) if y = di and i = max{ j |y = d j } and i < k
0 if y = dk or ek

2−(s(i )+1) if y = ei and i = max{ j |y = e j }, and i < k
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For example, if 0 = d1 < d2 = d3 < d4 < e4 = e3 < e2 < e1 = 1, then f16 is piece-
wise linear and is determined by the following points (d1,−h(1)), (d3,−h(3)), (d4,0),
(e4,0), (e2,h(2)), (e1,h(1)), where h(i ) = 2−(s(i )+1).

For any k ≥ 1, fs(k), fs(k+1) differs only on (di ,dk+1)∪(ek+1,e j ) where i = max{m|dm <
dk }, and j = max{m|em > ek }. Thus, the maximum difference between fs(k) and
fs(k+1) occurs at either dk or ek , and its value is at most 2−(s(k)+1). This implies that
f = limn fn exists, and that

| fn(y)− f (y)| ≤ 2−n (9.1)

for all n > 0.
It is obvious that f is strictly increasing and f (x) = 0.
Observe that for any k > 0 and any i , 1 ≤ i ≤ k, di and ei are in Di , and hence that

if di 6= di+1 then |di −di+1| > 2−(i+1); Observe also that | fs(k)(di )− fs(k)(di+1)| ≤ 2−s(i ).
Thus the derivative f ′

s(k) on [di ,di+1] is bounded by 2−s(i )/2−(i+1) ≤ 1. Similarly, we
can show this is true on the interval [ei ,ei+1]. By mean value theorem (Théorème
des accroissements finis),

| fs(k)(y)− fs(k)(d)| ≤ |y −d | (9.2)

for all y,d ∈ [0,1].
Consider a rational d ∈ Ds(k): fs(k)(d) is computable in time O(s(k)) by comput-

ing all di ’s and ei ’s 1 ≤ i ≤ k, finding the pair di and d j such that d ∈ [di ,d j ] (or
finding ei and e j such that d ∈ [ei ,e j ], or determining that d ∈ [dk ,ek ]), computing
the values of f (di ) and f (d j ) (or, respectively, computing the values of f (ei ) and
f (e j ))) and performing a linear interpolation.

It follows that f is polynomial time computable on [0,1]: indeed, to compute
f (y) at precision 2−n , compute k such that s(k) ≥ n +1. Take a dyadic d ∈ Ds(k) at
distance less than 2−s(k) of y , then output fs(k)(d): this is a rational at distance less
than 2−s(k) of fs(k)(d) by Equation (9.2). Now, fs(k)(y) is at distance less than 2−s(k) of
f (y) by Equation (9.1).

�

9.4 Complexity of Numerical Operators

It is difficult to define a uniform notion of complexity for operators of type F : C [0,1] →
C [0,1] such as integration or differentiation.

9.4.1 Computing the maximum (optimization)

Alternatively, one can study the time complexity of F ( f ) for polynomial-time com-
putable f .

Theorem 9.4 (Friedman’84) The following are equivalent.

1. P = N P

2. For each polynomial-time computable f : [0,1] → R, the maximum func-
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tion g : [0,1] →R defined by

g (x) := max{ f (y)|0 ≤ y ≤ x}

for all x ∈ [0,1] is polynomial time computable.

Rough idea:
The direction from 1. to 2. is based on the idea that

z ≤ g (x) ⇔ (∃y ∈ [0, x])z ≤ f (y).

Using the Polynomial-Time Projection Theorem this is (approximately) decid-
able in polynomial time, if P = N P . By a binary search over z, one can determine
g (x) in polynomial time.

More formally:
Proof: ⇒:
We only need to prove that for each f : [0,1]2 → R computable in polynomial

time, the function h : [0,1] → R defined by h(x) := max{ f (x, y)|0 ≤ y ≤ 1} is com-
putable in polynomial time.

Indeed, from f computable in polynomial time over [0,1], one can define func-
tion f1 on [0,1]2 computable in polynomial time as follows:

f1(x, y) =
{

f (0) if y > x
f (x − y) if y ≤ x

For each x ∈ [0,1], max{ f1(x, y)|0 ≤ y ≤ 1} = max{ f (y)|0 ≤ y ≤ x}.
Assume w.l.o.g. that r ang e( f ) ⊂ [0,1]. Consider M the Turing machine that

computes f in time p(n) for some polynomial p.
Define A to be the set of all pairs (d1,e) with e ∈ Dn ∩ [0,1], d1 ∈ Dp(n+2) ∩ [0,1]

for some n ≥ 0 and satisfying

(∃d2 ∈ Dp(n+2) ∩ [0,1])[e ≤ M bd1 ,bd2 (n +2)] :

here M bd1 ,bd2 (n +2) denotes the digit number n +2 output by the machine with its
two input tapes containing d1 and d2 respectively.

Then, A ∈ N P .
Let d1 ∈ Dp(n+2) ∩ [0,1] and e ∈ Dn ∩ [0,1]. Assume that for some x ∈ [0,1], |d1 −

x| ≤ 2−p(n+2), and e = max{e1 ∈ Dn ∩ [0,1]|(d1,e1) ∈ A}. Then we claim that

1. |e −h(d1)| ≤ 2−(n+1)

2. |h(d1)−h(x)| ≤ 2−(n+2)

The above two claims imply that |e−h(x)| ≤ 2−n . Since e can be found by a binary
search using A as oracle, it follows that function h is polynomial time computable if
P = N P .

It remains to prove the two claims.
Proof of 1. It is immediate that e ≤ f (d1,d2)+2−(n+2) for some d2 ∈ Dp(n+2)∩[0,1].

This implies that e −2−(n+1) ≤ h(d1). Conversely, assume that h(d1) = f (d1, y1) for
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some y1 ∈ [0,1]. Choose d2 ∈ Dp(n+2) ∩ [0,1] such that |d2 − y1| ≤ 2−p(n+2). Then
e ≥ f (d1,d2)−2−p(n+2) ≥ f (d1, y1)−2−(n+1) = h(d1)−2−(n+1).

Proof of 2.. Assume that h(d1) = f (d1, y1) and h(x) = f (x, yx ). Then |d1 − x| ≤
2−p(n+2) implies that | f (d1, yx )− f (x, yx )| ≤ 2−(n+2). Thus, h(d1) ≥ f (d1, yx ) ≥ f (x, yx )−
2−(n+2) = h(x)−2−(n+2). Similarly, we get h(x) ≥ h(d1)−2−(n+2), and thus the claim is
proved.

⇐. Let A ∈ N P . We need to construct a function f polynomial time computable
such that k polynomial time computable implies A ∈ P , where k is the maximiza-
tion function such that k(x) = max{ f (y)|0 ≤ y ≤ x}. Since A ∈ N P , there exists a
polynomial-time predicate R and polynomial function p such that for all strings s,
s ∈ A ⇔∃t , |t | = p(|s|) R(s, t ), where |s| is the length of word s.

Now, we divide the interval [0,1] into an infinite number of subintervals, each
corresponding to a string s ∈ {0,1}∗. Namely, for each n ≥ 1, let an = 1− 2−(n−1),
and for each string s of length n, if s is the i th string in {0,1}n , 0 ≤ i ≤ 2n − 1 (i.e.,
s is th n-bit binary representation of integer i ), then let us = an + i ∗2−2n and vs =
us + 2−2n . We further divide interval [us , (us + vs )/2] into 2p(n) many subintervals,
each corresponding to a string t of length p(n). More precisely, if t is the i th string
in {0,1}p(n), 0 ≤ i ≤ 2p(n) −1, then we let ys,t = us + i ∗2−(p(n)+2n+1) and zs,t = ys,t +
2−(p(n)+2n+1).

Let g1 be a function with g1(0) = 0, g1(1) = 1, g1 strictly increasing on [0,1], g1

polynomial time computable. We can even assume g (n)
1 (0) = g (n)

1 (1) = 0 for all n ≥ 1,

where g (n)
1 denotes nth derivative. We can assume also that g (n)

1 is polynomial time
computable for all n: indeed, considering

h(x) =
{

e−1/x2
if x > 0

0 if x ≤ 0

then one can consider

g1(x) = h(x −1/4)

h(3/4−x)+h(x −1/4)
.

Define a bump function h : [0,1] →R by

h(x) =
{

g1(2x) if 0 ≤ x ≤ 1/2
g1(2−2x) if 1/2 ≤ x ≤ 2

Now, we define a function f on [0,1] as follows: On each interval [(us +vs )/2, vs ],
f (x) = 2x − vs . On each interval [ys,t , zs,t ],

f (x) =
{

us if not R(s, t )
us +2−(p(n)+2n+2) ∗h1(2p(n)+2n+1(x − ys,t )) if R(s, t )

That is f has a bump of height 2−(p(n)+2n+2) on [ys,t , zs,t ] if t is a witness fo s being
in set A, and f is flat on [ys,t , zs,t ] otherwise.

It is easy to see that f is continuous, and even infinitely derivable. Furthermore,
if k is polynomial time computable over [0,1], then we can determine, for each string
s, whether s ∈ A as follows: we compute an approximate value e to k((us + vs )/2)
correct within error ≤ 2−(p(n)+2n+4), and decide s ∈ A iff e > us .

�
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9.4.2 Integration

Theorem 9.5 (Friedman Ko’86) The following are equivalent.

1. F P = #P

2. For each polynomial-time computable f : [0,1] →R, the integral function
g : [0,1] →R defined by

g (x) :=
∫ x

0
f (t )d t

for all x ∈ [0,1] is polynomial time computable.

Here #P denotes the class of functions that counts the number of accepting com-
putations of a non-deterministic polynomial-time Turing machine.

For the proof of 1. ⇒ 2. one can guess a number of points (t , y) with 0 ≤ t ≤ x and
then count those with y ≤ f (t ) to get an approximation for the integral g (x) (when
f is positive).

9.5 Rough Classification

Rough classification [Ko, 1991]

Numerical Problem Complexity Class
Optimisation (numbers) NP-complete
Optimisation (functions) EXPSPACE-complete
Ordinary Differential Equations PSPACE-complete
Integration #P-complete
Roots (dim 1) P-complete
Differentiation P (if computable)
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Chapter 10

Selected Results / Myhill’s
Theorem / Pour-El Richard’s
Construction

10.1 Some Selected Theorems

10.1.1 Brouwer’s Fixed Point Theorems

Theorem 10.1 Every continuous function f : [0,1]n → [0,1]n admits a fixed point
x, i.e. a point with f (x) = x.

Theorem 10.2 (Orevkov’63) There exists a computable function f : [0,1]2 →
[0,1]2 without computable fixed point.

10.1.2 Derivatives

Theorem 10.3 (Myhill’71) There exists a computable function f : [0,1] →Rwith
a continuous derivative f ′ : [0,1] →Rwhich is not computable.

10.1.3 Differential Equations

Theorem 10.4 (Pour-El Richards 79) There exists some computable

f : [0,1]× [−1,1] →R
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such that ordinary differential equation

y ′ = f (t , y),

has no computable solution over any closed domain.

Theorem 10.5 (Pour-El Richards) There exists a computable initial condition
f and a three-dimensional wave u such that x 7→ u(0, x) is a computable func-
tion, but the unique equation of the wave equation{

δ2u
δt 2 =∆u

u(0, x) = f , δu
δt = 0, t ∈R, x ∈R3

at time 1 leads to a non-computable x 7→ u(1, x).

10.2 Proof of Myhill’s Theorem about Derivatives

10.2.1 General Idea

The idea is

• to construct a function f by placing “bumps” at each number of the form 2−n ,
where n ∈N belongs to a recursively enumerable, non-recursive set A, and by
leaving the neighborhood of all other numbers 2−n flat.

• for n ∈ A, the slope of the graph at 2−n can be effectively bounded from be-
low, given n: thus, if we could compute f ′(2−n) recursively, we could decide
whether n ∈ A, contradicting the non-recursiveness of A.

10.2.2 A Basic Bump

We consider

θ(x) =
{

x(x2 −1)2 for −1 ≤ x ≤ 1
0 for |x| > 1

(dessin).
Properties:

• θ(−1) = θ(0) = θ(1) = 0

• θ′(−1) = θ′(1) = 0

• θ′(0) = 1

• θ has its minimum −λ at x =−1/
p

5 and its maximum +λ at x = 1/
p

5.

• |θ(x)| ≤λ for all x.

• θ is continuous with a continuous derivative over all R.

We call it a “bump” of length 2 and height λ.
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10.2.3 A Dilated Bump

We consider θαβ(x) = (β/λ)θ(x/α): this is a bump of length 2α and height β.
(dessin)
Properties:

• θαβ(−α) = θαβ(0) = θαβ(α) = 0

• θ′
αβ

(−α) = θ′
αβ

(α) = 0

• θ′
αβ

(0) =β/(λα)

• |θαβ(x)| ≤β for all x.

• θαβ is continuous with a continuous derivative over all R.

10.2.4 The function f

We consider A ⊂N recursively enumerable but non-recursive.
We consider a total recursive h :N→N enumerating A without repetitions: A =

{n = h(k)|k ∈N}.
The idea is to put, for every n of the form n = h(k), a bump θαnβn around 2−n ,

where αn = 2−k−2n−2, βn = 2−k−n−2.
In other words:

f (x) =
∞∑

k=0
θαh(k),βh(k)

(x −2−h(k)).

ATTENTION: here f is written as a series, but this is not “really” a series:

• for a given x, at most one term of the sum is not zero: i.e., no two bumps
overlap.

– Indeed, the half-lengths of the bumps around the points 2−n and 2−(n−1)

are at most 2−2n−2 and 2−2n , and the sum of the two half-lengths is less
than 2−n , the distance between the two points.

10.2.5 The function f has a continuous derivative

f has a continuous derivative:

• the graph of f consists of alternate bumps and horizontal line-segments, and
since the bumps have horizontal half-tangent at their end points, f has a con-
tinuous derivative except possibly at x = 0

• Given x, if x is not on a bump, then f (x) = 0 on a neighborhood of x, and
hence f ′(x) = 0. If x is on the bump surrounding 2−n , since |θ′| ≤ 1 on [0,1],
| f ′(x)| ≤ βn/αn . Since βn/αn → 0 as n →∞, f ′(x) → 0 as x → 0. From a well-
known result of analysis (theorème des accroissements finis), considering that
f (0) = 0, we have ( f (x)− f (0))/(x −0) = f (x)/x = f ′(y) for some 0 < y < x. We
deduce that f (x)/x → 0 when x → 0, that is to say that f is derivable in 0 with
f ′(0) = 0, and furthermore that f ′ is continuous at x = 0.
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10.2.6 The function f is computable on [0,1]

Let x ∈ [0,1] be given, and let it be required to compute f (x) within 2−n .

Let

gM (x) =
M∑

k=0
θαh(k),βh(k)

(x −2−h(k)).

it suffices to prove that

1. |gM (x)− f (x)| < 2−M ;

2. and that gM (x) is computable.

Point 1.: for all x, gn(x)− f (x) is zero or consists of a single term

θαh(k),βh(k)
(x −2−h(k)) = βh(k)

λ
θ

(
x −2−h(k)

αh(k)

)
.

But |θαh(k),βh(k)
| ≤βh(k) = 2−k−h(k)−2 < 2−k < 2−M q.e.d.

Point 2.: gM (x) is computable since θ is.

• Indeed, to compute θ(x) we first determine whether x < 0 or x >−1, if x < 0 we
can compute θ(x) since θ(x) = min(0, x(x2−1)2). If x >−1, determine whether
x > 0 or x < 1. If x > 0, then θ(x) = max(0, x(x2 −1)2). If finally −1 < x < 1, then
θ(x) = x(x2 −1)2.

10.2.7 The function f ′ is not computable on [0,1]

f ′ cannot be computable:

1. if n ∈ A, then f ′(2−n) = θ′
αnβn

(0) =βn/(λαn) = 2−n/λ.

2. if n 6∈ A, then f ′(2−n) = 0.

Since these alternatives can be decided, this yields a decision procedure for A.

As A is supposed to be recursively enumerable non-recursive, this is impossible.

10.3 Idea of the Proof of Pour-El Richards Theorem about
Ordinary Differential Equations

10.3.1 A disperser

Consider K (x, y) given by
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The solutions of {
y ′ = K (x, y)
y(0) = 0

are

y(x) =C x2

with −1 ≤C ≤ 1.

10.3.2 A collector

We “reverse” the time variable to get a “collector”.

10.3.3 A box

A box is made of a “collector” and of a “disperser”.

(dessin).

We get differential equation y ′ = F (t , y(t )).

The trick is to consider y ′ = F (t , y(t ))+h(t , y(t )), where h is a “pulse”: something
null, positive, or negative. If it is positive, the solution will go above the line y = x2

in the disperser, If it is negative, the solution will go below the line y = −x2 in the
disperser. If it is null, the solution can follow any trajectory between the parabola of
the disperser.
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10.3.4 A sequence of boxes

A sequence of “boxes”.

• Each box is made of a “collector” and of a “disperser”.

• The boxes become progressively smaller as m increases, and the vertexes con-
verge to the origin.

This provides computability of the function.
A small “pulse” is placed at the vertex of some of the box:

• For the mth box, this pulse is positive, negative, or zero, depending on whether
m ∈ A, m ∈ B , or m 6∈ A∪B ,

• where (A,B) is a fixed recursively inseparable pair of sets.

10.3.5 Idea of the proof

• Let a(n) and b(n) be one to one recursive functions generating A and B .

• If a(n) = m, then we place a positive pulse of height 2−(m+n+5) at the vertex of
box m.

• If b(n) = m, then we place a negative pulse of height 2−(m+n+5) at the vertex of
box m.

• Assume the solution of the ODE is computable.

• By reading x = xm at the aperture of disperser m within an error less than half
the size of the aperture, one knows whether x ∈ A or x ∈ B .

• Impossible as (A,B) is a recursively inseparable pair of sets.
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