
Hybrid and
Timed
Systems

Eugene Asarin

Introduction

Hybrid and Timed Systems
modeling, theory, verification

Eugene Asarin

and CNRS

Shanghai Computer Science Summer School 2010

Eugene Asarin

Eugene Asarin
Prepared for

Eugene Asarin
Revised for MPRI course 2-8-2
2022-23
(barred slides are not in my programme this year)

Eugene Asarin
Université de Paris Cité

Hybrid and
Timed
Systems

Eugene Asarin

Introduction

Introductory equations

Hybrid Systems

• Hybrid Systems = Discrete+Continuous

• Hybrid Automata = A model of Hybrid systems

• Original motivation= Physical plant + Digital controller

• New applications = biology, economy, numerics, circuits

• Hybrid community = Control scientists + Applied
mathematicians + Some computer scientists

Eugene Asarin
Cyber-Physical!

Eugene Asarin

Eugene Asarin

Hybrid and
Timed
Systems

Eugene Asarin

Introduction

Introductory equations

Hybrid Systems

• Hybrid Systems = Discrete+Continuous

• Hybrid Automata = A model of Hybrid systems

• Original motivation= Physical plant + Digital controller

• New applications = biology, economy, numerics, circuits

• Hybrid community = Control scientists + Applied
mathematicians + computer scientists

Timed Systems

• Timed Systems = Discrete behavior+Continuous Time

• Timed Automata = A subclass of Hybrid automata

• The starting point = A beautiful result by Alur & Dill.

• Applications= Real-time digital system, etc...

• Timed community = Computer scientists

Eugene Asarin
Cyber-Physical

Eugene Asarin

Eugene Asarin

Eugene Asarin

Eugene Asarin
and a nice automata/languages theory

Eugene Asarin

Hybrid and
Timed
Systems

Eugene Asarin

Introduction

Global Outline

1 Hybrid Automata

2 Timed Automata

3 Back to Hybrid: Decidable Subclasses

Eugene Asarin
(see Laurent Fribourg’s lectures)

Eugene Asarin

Hybrid and
Timed
Systems

Eugene Asarin

Hybrid
automata: the
model
An example

Definition of HA
Classes of HA
A couple of
exercises

Verification of
HA

The reachability
problem
The curse of
undecidability
How to verify
HA: theory and
practice

Part I

Hybrid Automata

Hybrid and
Timed
Systems

Eugene Asarin

Hybrid
automata: the
model
An example

Definition of HA
Classes of HA
A couple of
exercises

Verification of
HA

The reachability
problem
The curse of
undecidability
How to verify
HA: theory and
practice

Outline

1 Hybrid automata: the model
An example
Definition of HA
Classes of HA
A couple of exercises

2 Verification of HA
The reachability problem
The curse of undecidability
How to verify HA: theory and practice

Eugene Asarin

Eugene Asarin

Hybrid and
Timed
Systems

Eugene Asarin

Hybrid
automata: the
model
An example

Definition of HA
Classes of HA
A couple of
exercises

Verification of
HA

The reachability
problem
The curse of
undecidability
How to verify
HA: theory and
practice

Outline

1 Hybrid automata: the model
An example
Definition of HA
Classes of HA
A couple of exercises

2 Verification of HA
The reachability problem
The curse of undecidability
How to verify HA: theory and practice

Eugene Asarin

Eugene Asarin

Hybrid and
Timed
Systems

Eugene Asarin

Hybrid
automata: the
model
An example

Definition of HA
Classes of HA
A couple of
exercises

Verification of
HA

The reachability
problem
The curse of
undecidability
How to verify
HA: theory and
practice

The first (cyber-physical) example

Notation
For x = x(t) we write ẋ = ẋ(t) = x ′(t) = dx/dt.

Hybrid and
Timed
Systems

Eugene Asarin

Hybrid
automata: the
model
An example

Definition of HA
Classes of HA
A couple of
exercises

Verification of
HA

The reachability
problem
The curse of
undecidability
How to verify
HA: theory and
practice

The first (cyber-physical) example

Notation
For x = x(t) we write ẋ = ẋ(t) = x ′(t) = dx/dt.

• When the heater is OFF, the room cools down :

ẋ = −x

• When it is ON, the room heats:

ẋ = H − x

Eugene Asarin

Hybrid and
Timed
Systems

Eugene Asarin

Hybrid
automata: the
model
An example

Definition of HA
Classes of HA
A couple of
exercises

Verification of
HA

The reachability
problem
The curse of
undecidability
How to verify
HA: theory and
practice

The first (cyber-physical) example

Notation
For x = x(t) we write ẋ = ẋ(t) = x ′(t) = dx/dt.

A thermostat

• When the heater is OFF, the room cools down :

ẋ = −x

• When it is ON, the room heats:

ẋ = H − x

• When > M it switches OFF

• When < m it switches ON

Eugene Asarin
x

Eugene Asarin
x

Hybrid and
Timed
Systems

Eugene Asarin

Hybrid
automata: the
model
An example

Definition of HA
Classes of HA
A couple of
exercises

Verification of
HA

The reachability
problem
The curse of
undecidability
How to verify
HA: theory and
practice

The first (cyber-physical) example

Notation
For x = x(t) we write ẋ = ẋ(t) = x ′(t) = dx/dt.

A thermostat

• When the heater is OFF, the room cools down :

ẋ = −x

• When it is ON, the room heats:

ẋ = H − x

• When t > M it switches OFF

• When t < m it switches ON

A strange creature. . .

Hybrid and
Timed
Systems

Eugene Asarin

Hybrid
automata: the
model
An example

Definition of HA
Classes of HA
A couple of
exercises

Verification of
HA

The reachability
problem
The curse of
undecidability
How to verify
HA: theory and
practice

A bad syntax

Some mathematicians prefer to write

ẋ = f (x , q)

where

f (x ,Off) = −x

f (x ,On) = H − x

with some switching rules on q.

Eugene Asarin

Hybrid and
Timed
Systems

Eugene Asarin

Hybrid
automata: the
model
An example

Definition of HA
Classes of HA
A couple of
exercises

Verification of
HA

The reachability
problem
The curse of
undecidability
How to verify
HA: theory and
practice

A bad syntax

Some mathematicians prefer to write

ẋ = f (x , q)

where

f (x ,Off) = −x

f (x ,On) = H − x

with some switching rules on q.

But we are computer scientists
and draw an automaton

Hybrid and
Timed
Systems

Eugene Asarin

Hybrid
automata: the
model
An example

Definition of HA
Classes of HA
A couple of
exercises

Verification of
HA

The reachability
problem
The curse of
undecidability
How to verify
HA: theory and
practice

Hybrid automatonlabel

invariant

dynamics

guard reset

x = M

x ≤ M

ẋ = H − x

x ≥ m

ẋ = −x

OffOn

x = m /γ

A formal definition: It is a tuple . . .

Hybrid and
Timed
Systems

Eugene Asarin

Hybrid
automata: the
model
An example

Definition of HA
Classes of HA
A couple of
exercises

Verification of
HA

The reachability
problem
The curse of
undecidability
How to verify
HA: theory and
practice

Hybrid automatonlabel

invariant

dynamics

guard reset

x = M

x ≤ M

ẋ = H − x

x ≥ m

ẋ = −x

OffOn

x = m /γ

Its behavior:

m

x

t

M

Hybrid and
Timed
Systems

Eugene Asarin

Hybrid
automata: the
model
An example

Definition of HA
Classes of HA
A couple of
exercises

Verification of
HA

The reachability
problem
The curse of
undecidability
How to verify
HA: theory and
practice

label

invariant

dynamics

guard reset

x = M

x ≤ M

ẋ = H − x

x ≥ m

ẋ = −x

OffOn

x = m /γ

Hybrid and
Timed
Systems

Eugene Asarin

Hybrid
automata: the
model
An example

Definition of HA
Classes of HA
A couple of
exercises

Verification of
HA

The reachability
problem
The curse of
undecidability
How to verify
HA: theory and
practice

label

invariant

dynamics

guard reset

x = M

x ≤ M

ẋ = H − x

x ≥ m

ẋ = −x

OffOn

x = m /γ

Definition
A hybrid automaton is H = (Q,X ,Σ,Dyn, I ,∆) with

• Q finite set of locations

• X = Rn, continuous state space

• Dyn, dynamics on X for every q ∈ Q

• I , invariant, staying condition in X

• ∆, finite set of transitions δ = (p, q, a, g , r)

Hybrid and
Timed
Systems

Eugene Asarin

Hybrid
automata: the
model
An example

Definition of HA
Classes of HA
A couple of
exercises

Verification of
HA

The reachability
problem
The curse of
undecidability
How to verify
HA: theory and
practice

label

invariant

dynamics

guard reset

x = M

x ≤ M

ẋ = H − x

x ≥ m

ẋ = −x

OffOn

x = m /γ

Definition
A hybrid automaton is H = (Q,X ,Σ,Dyn, I ,∆) with

• Q finite set of locations

• X = Rn, continuous state space , a point in X =
valuation of continuous variables x = x1, . . . , xn

• Dyn, dynamics on X for every q ∈ Q

• I , invariant, staying condition in X

• ∆, finite set of transitions δ = (p, q, a, g , r)

Hybrid and
Timed
Systems

Eugene Asarin

Hybrid
automata: the
model
An example

Definition of HA
Classes of HA
A couple of
exercises

Verification of
HA

The reachability
problem
The curse of
undecidability
How to verify
HA: theory and
practice

label

invariant

dynamics

guard reset

x = M

x ≤ M

ẋ = H − x

x ≥ m

ẋ = −x

OffOn

x = m /γ

Definition
A hybrid automaton is H = (Q,X ,Σ,Dyn, I ,∆) with

• Q finite set of locations

• X = Rn, continuous state space

• Dyn, dynamics on X for every q ∈ Q, Dyn(q) = fq,
whenever in location q the continuous state obeys
ẋ = fq(x).

• I , invariant, staying condition in X

• ∆, finite set of transitions δ = (p, q, a, g , r)

Hybrid and
Timed
Systems

Eugene Asarin

Hybrid
automata: the
model
An example

Definition of HA
Classes of HA
A couple of
exercises

Verification of
HA

The reachability
problem
The curse of
undecidability
How to verify
HA: theory and
practice

label

invariant

dynamics

guard reset

x = M

x ≤ M

ẋ = H − x

x ≥ m

ẋ = −x

OffOn

x = m /γ

Definition
A hybrid automaton is H = (Q,X ,Σ,Dyn, I ,∆) with

• Q finite set of locations

• X = Rn, continuous state space

• Dyn, dynamics on X for every q ∈ Q

• I , invariant, staying condition in X , whenever in location q
the continuous state obeys x ∈ I (q).

• ∆, finite set of transitions δ = (p, q, a, g , r)

Hybrid and
Timed
Systems

Eugene Asarin

Hybrid
automata: the
model
An example

Definition of HA
Classes of HA
A couple of
exercises

Verification of
HA

The reachability
problem
The curse of
undecidability
How to verify
HA: theory and
practice

label

invariant

dynamics

guard reset

x = M

x ≤ M

ẋ = H − x

x ≥ m

ẋ = −x

OffOn

x = m /γ

Definition
A hybrid automaton is H = (Q,X ,Σ,Dyn, I ,∆) with

• Q finite set of locations

• X = Rn, continuous state space

• Dyn, dynamics on X for every q ∈ Q

• I , invariant, staying condition in X
• ∆, finite set of transitions δ = (p, q, a, g , r)

• p, q ∈ Q, from p to q
• a ∈ Σ a label
• g a guard; g(x) required to take δ
• r a reset (or jump); x := r(x) when taking δ

Hybrid and
Timed
Systems

Eugene Asarin

Hybrid
automata: the
model
An example

Definition of HA
Classes of HA
A couple of
exercises

Verification of
HA

The reachability
problem
The curse of
undecidability
How to verify
HA: theory and
practice

Trajectory-based semantics
label

invariant

dynamics

guard reset

x = M

x ≤ M

ẋ = H − x

x ≥ m

ẋ = −x

OffOn

x = m /γ

Hybrid and
Timed
Systems

Eugene Asarin

Hybrid
automata: the
model
An example

Definition of HA
Classes of HA
A couple of
exercises

Verification of
HA

The reachability
problem
The curse of
undecidability
How to verify
HA: theory and
practice

Trajectory-based semantics
label

invariant

dynamics

guard reset

x = M

x ≤ M

ẋ = H − x

x ≥ m

ẋ = −x

OffOn

x = m /γ

A trajectory : ξ : [0;T] → Q × Rn

m

x

t

M

Hybrid and
Timed
Systems

Eugene Asarin

Hybrid
automata: the
model
An example

Definition of HA
Classes of HA
A couple of
exercises

Verification of
HA

The reachability
problem
The curse of
undecidability
How to verify
HA: theory and
practice

Transition system semantics

label

invariant

dynamics

guard reset

x = M

x ≤ M

ẋ = H − x

x ≥ m

ẋ = −x

OffOn

x = m /γ

Transition system (S ,T) of a HA

• States: S = Q × Rn

• Transitions: T = Tflow ∪ Tjump

Hybrid and
Timed
Systems

Eugene Asarin

Hybrid
automata: the
model
An example

Definition of HA
Classes of HA
A couple of
exercises

Verification of
HA

The reachability
problem
The curse of
undecidability
How to verify
HA: theory and
practice

Transition system semantics

label

invariant

dynamics

guard reset

x = M

x ≤ M

ẋ = H − x

x ≥ m

ẋ = −x

OffOn

x = m /γ

Transition system (S ,T) of a HA

• States: S = Q × Rn

• Transitions: T = Tflow ∪ Tjump

Hybrid and
Timed
Systems

Eugene Asarin

Hybrid
automata: the
model
An example

Definition of HA
Classes of HA
A couple of
exercises

Verification of
HA

The reachability
problem
The curse of
undecidability
How to verify
HA: theory and
practice

Transition system semanticslabel

invariant

dynamics

guard reset

x = M

x ≤ M

ẋ = H − x

x ≥ m

ẋ = −x

OffOn

x = m /γ

Transition system (S ,T) of a HA

• States: S = Q × Rn

• Transitions: T = Tflow ∪ Tjump

• (q, x1)
flow
→ (q, x2) ⇔

we can go from x1 to x2 in ODE ẋ = fq(x)

• (q1, x1)
jump
→ (q2, x2) ⇔ if we can jump.

Hybrid and
Timed
Systems

Eugene Asarin

Hybrid
automata: the
model
An example

Definition of HA
Classes of HA
A couple of
exercises

Verification of
HA

The reachability
problem
The curse of
undecidability
How to verify
HA: theory and
practice

Transition system semantics

label

invariant

dynamics

guard reset

x = M

x ≤ M

ẋ = H − x

x ≥ m

ẋ = −x

OffOn

x = m /γ

Transition system (S ,T) of a HA

• States: S = Q × Rn

• Transitions: T = Tflow ∪ Tjump

• Runs: sequences of states and transitions.

Hybrid and
Timed
Systems

Eugene Asarin

Hybrid
automata: the
model
An example

Definition of HA
Classes of HA
A couple of
exercises

Verification of
HA

The reachability
problem
The curse of
undecidability
How to verify
HA: theory and
practice

Transition system semanticslabel

invariant

dynamics

guard reset

x = M

x ≤ M

ẋ = H − x

x ≥ m

ẋ = −x

OffOn

x = m /γ

Transition system (S ,T) of a HA

• States: S = Q × Rn

• Transitions: T = Tflow ∪ Tjump

• Runs: sequences of states and transitions.

(On, 0)
flow
→ (On,M)

jump
→ (Off,M)

flow
→ (Off,m)

jump
→ (On,m) · ·

Hybrid and
Timed
Systems

Eugene Asarin

Hybrid
automata: the
model
An example

Definition of HA
Classes of HA
A couple of
exercises

Verification of
HA

The reachability
problem
The curse of
undecidability
How to verify
HA: theory and
practice

Classes of Hybrid Automata

Why classes?
Because HA are too reach; it is impossible to establish, decide,
analyze properties of all HA.

How to define a class of HA

• dimension, discrete or continuous time, eager or lazy

• what kind of dynamics

• what kind of guards/invarians/jumps

Eugene Asarin
We will consider TIMED AUTOMATA

Hybrid and
Timed
Systems

Eugene Asarin

Hybrid
automata: the
model
An example

Definition of HA
Classes of HA
A couple of
exercises

Verification of
HA

The reachability
problem
The curse of
undecidability
How to verify
HA: theory and
practice

How to model?

Different systems

• a control system

• a scheduler with preemption

• a genetic network

The same class of models
A network of interacting Hybrid automata

Hybrid and
Timed
Systems

Eugene Asarin

Hybrid
automata: the
model
An example

Definition of HA
Classes of HA
A couple of
exercises

Verification of
HA

The reachability
problem
The curse of
undecidability
How to verify
HA: theory and
practice

Modeling exercise 1

Genetic network
We consider expression of two genes A and B, i.e. production
of two proteins P and Q

• The proteins are degraded with rate k .

• P catalyzes expression of B:
• Production of Q is proportional to the concentration of P

with a coefficient a.
• Concentration of P crosses a threshold s ⇒ production of

Q constant = as.

• Q inhibits expression of A:
• Production of P equals d − b·(concentration de Q).
• Concentration of Q crosses a threshold r ⇒ production of

P blocks.

Hybrid and
Timed
Systems

Eugene Asarin

Hybrid
automata: the
model
An example

Definition of HA
Classes of HA
A couple of
exercises

Verification of
HA

The reachability
problem
The curse of
undecidability
How to verify
HA: theory and
practice

Modeling exercise 2

Scheduling
Schedule two jobs on one CPU and one printer with a total
execution time up to 16 minutes.

• Job 1 : Compute (10 min); Print (5 min)

• Job 2 : Download (3 min); Compute (1 min); Print (2
min)

Try it :

1 without preemption;

2 with preemptible computing.

Hybrid and
Timed
Systems

Eugene Asarin

Hybrid
automata: the
model
An example

Definition of HA
Classes of HA
A couple of
exercises

Verification of
HA

The reachability
problem
The curse of
undecidability
How to verify
HA: theory and
practice

Verification
and reachability problems

• Is automatic verification possible for HA?

Hybrid and
Timed
Systems

Eugene Asarin

Hybrid
automata: the
model
An example

Definition of HA
Classes of HA
A couple of
exercises

Verification of
HA

The reachability
problem
The curse of
undecidability
How to verify
HA: theory and
practice

Verification
and reachability problems

• Is automatic verification possible for HA?

• Safety: are we sure that HA never enters a bad state?

• It can be seen as reachability : verify that

¬Reach(Init,Bad)

Hybrid and
Timed
Systems

Eugene Asarin

Hybrid
automata: the
model
An example

Definition of HA
Classes of HA
A couple of
exercises

Verification of
HA

The reachability
problem
The curse of
undecidability
How to verify
HA: theory and
practice

Verification
and reachability problems

• Is automatic verification possible for HA?

• Safety: are we sure that HA never enters a bad state?

• It can be seen as reachability : verify that

¬Reach(Init,Bad)

• It is a natural and challenging mathematical problem.

• Many works on decidability

• Some works on approximated techniques

Hybrid and
Timed
Systems

Eugene Asarin

Hybrid
automata: the
model
An example

Definition of HA
Classes of HA
A couple of
exercises

Verification of
HA

The reachability
problem
The curse of
undecidability
How to verify
HA: theory and
practice

The reachability problem for a
class C

Problem
Given

• a hybrid automaton H ∈ C

• two sets A,B ⊂ Q × Rn

find out whether there exists a trajectory of H starting in A
and arriving to B.
All parameters rational.

Hybrid and
Timed
Systems

Eugene Asarin

Hybrid
automata: the
model
An example

Definition of HA
Classes of HA
A couple of
exercises

Verification of
HA

The reachability
problem
The curse of
undecidability
How to verify
HA: theory and
practice

Exact methods: The curse of
undecidability

Bad news

• Koiran et al.: Reach is undecidable for 2d PAM.

• AM95: Reach is undecidable for 3d PCD.

• HPKV95 Many results of the type : “3clocks + 2
stopwatches = undecidable”

Hybrid and
Timed
Systems

Eugene Asarin

Hybrid
automata: the
model
An example

Definition of HA
Classes of HA
A couple of
exercises

Verification of
HA

The reachability
problem
The curse of
undecidability
How to verify
HA: theory and
practice

Exact methods: The curse of
undecidability

Bad news

• Koiran et al.: Reach is undecidable for 2d PAM.

• AM95: Reach is undecidable for 3d PCD.

• HPKV95 Many results of the type : “3clocks + 2
stopwatches = undecidable”

They are really bad

• Reachability is undecidable for very simple HA.

• Thus, other verification problems are also undecidable.

Hybrid and
Timed
Systems

Eugene Asarin

Hybrid
automata: the
model
An example

Definition of HA
Classes of HA
A couple of
exercises

Verification of
HA

The reachability
problem
The curse of
undecidability
How to verify
HA: theory and
practice

Undecidability Proofs —
Preliminaries

Proof method:
simulation of Minsky Machine, Turing Machine etc.

Hybrid and
Timed
Systems

Eugene Asarin

Hybrid
automata: the
model
An example

Definition of HA
Classes of HA
A couple of
exercises

Verification of
HA

The reachability
problem
The curse of
undecidability
How to verify
HA: theory and
practice

Undecidability Proofs —
Preliminaries

Proof method:
simulation of Minsky Machine, Turing Machine etc.

Details: proof schema

• Reachability undecidable for Minsky Machines
(well-known).

• A class of HA can simulate MM (to prove).

• Reach for MM & Reach for HA.

• Conclude that Reach for HA is undecidable.

Hybrid and
Timed
Systems

Eugene Asarin

Hybrid
automata: the
model
An example

Definition of HA
Classes of HA
A couple of
exercises

Verification of
HA

The reachability
problem
The curse of
undecidability
How to verify
HA: theory and
practice

Minsky Machines

Definition

• A counter: values in N; operations: C ++, C −−; test
C > 0?

• A Minsky machine has 2 counters

• Its program has finitely many lines like that:
q1 : D ++; goto q2
q2 : C −−; goto q3
q3 : if C > 0 then goto q2 else q1

Hybrid and
Timed
Systems

Eugene Asarin

Hybrid
automata: the
model
An example

Definition of HA
Classes of HA
A couple of
exercises

Verification of
HA

The reachability
problem
The curse of
undecidability
How to verify
HA: theory and
practice

Minsky Machines

Definition

• A counter: values in N; operations: C ++, C −−; test
C > 0?

• A Minsky machine has 2 counters

• Its program has finitely many lines like that:
q1 : D ++; goto q2
q2 : C −−; goto q3
q3 : if C > 0 then goto q2 else q1

Theorem (Minsky)

Reachability is undecidable for Minsky machines.

Hybrid and
Timed
Systems

Eugene Asarin

Hybrid
automata: the
model
An example

Definition of HA
Classes of HA
A couple of
exercises

Verification of
HA

The reachability
problem
The curse of
undecidability
How to verify
HA: theory and
practice

Minsky Machines

Definition

• A counter: values in N; operations: C ++, C −−; test
C > 0?

• A Minsky machine has 2 counters

• Its program has finitely many lines like that:
q1 : D ++; goto q2
q2 : C −−; goto q3
q3 : if C > 0 then goto q2 else q1

Theorem (Minsky)

Reachability is undecidable for Minsky machines.

Fact
Any algorithm can be programmed on a Minsky machine. But
they are sloooooooow.

Eugene Asarin
(All variants: (p,0,0)->(q,0,0); (p,0,0)->(q,*,*);
or (p,n,0)-> (q,*,*) even for a fixed machine, etc

Hybrid and
Timed
Systems

Eugene Asarin

Hybrid
automata: the
model
An example

Definition of HA
Classes of HA
A couple of
exercises

Verification of
HA

The reachability
problem
The curse of
undecidability
How to verify
HA: theory and
practice

A typical undecidability theorem

Theorem (Koiran, Cosnard, Garzon)

Reach is undecidable for 2d PAM.

Hybrid and
Timed
Systems

Eugene Asarin

Hybrid
automata: the
model
An example

Definition of HA
Classes of HA
A couple of
exercises

Verification of
HA

The reachability
problem
The curse of
undecidability
How to verify
HA: theory and
practice

A typical undecidability theorem

Theorem (Koiran, Cosnard, Garzon)

Reach is undecidable for 2d PAM.

Reminder
A 2 dimensional PAM:

P1 P2

A1x+b1
A2x+b2

x := Aix+ bi for x ∈ Pi

Hybrid and
Timed
Systems

Eugene Asarin

Hybrid
automata: the
model
An example

Definition of HA
Classes of HA
A couple of
exercises

Verification of
HA

The reachability
problem
The curse of
undecidability
How to verify
HA: theory and
practice

Simulating a counter by a PAM

01234C
x 0 1

Counter PAM

State space N State space [0; 1]
State C = n x = 2−n

C ++ x := x/2
C −− x := 2x
C > 0? x < 0.75?

Hybrid and
Timed
Systems

Eugene Asarin

Hybrid
automata: the
model
An example

Definition of HA
Classes of HA
A couple of
exercises

Verification of
HA

The reachability
problem
The curse of
undecidability
How to verify
HA: theory and
practice

Encoding a state of a Minsky
Machine

q
1

q
2

q
3

(0,3)(2,1)(3,3)
Minsky Machine PAM

State space {q1, . . . , qk}× N× N State space [1; k + 1] × [0; 1]
State (qi ,C = m,D = n) x = i + 2−m, y = 2−n

Hybrid and
Timed
Systems

Eugene Asarin

Hybrid
automata: the
model
An example

Definition of HA
Classes of HA
A couple of
exercises

Verification of
HA

The reachability
problem
The curse of
undecidability
How to verify
HA: theory and
practice

Simulating a Minsky Machine

Minsky Machine PAM

State space {q1, . . . , qk}× N× N State space [1; k + 1] × [0; 1]
State (qi ,C = m,D = n) x = i + 2−m, y = 2−n

q1 : D ++; goto q2

{

x := x + 1
y := y/2

if 1 < x ≤ 2

q2 : C −−; goto q3

{

x := 2(x − 2) + 3
y := y

if 2 < x ≤ 3

q3 : if C > 0 then goto q2 else q1

{

x := x − 1
y := y

if 3 < x < 4
{

x := x − 2
y := y

if x = 4

Eugene Asarin
MM: (q_i,0,0)…->(q_j,*,*)

Eugene Asarin
ssi PAM: (i+1,1) …->le carré j<x<=j+1

Hybrid and
Timed
Systems

Eugene Asarin

Hybrid
automata: the
model
An example

Definition of HA
Classes of HA
A couple of
exercises

Verification of
HA

The reachability
problem
The curse of
undecidability
How to verify
HA: theory and
practice

. . . finally we have proved:

Theorem (Koiran et al.)

Reach is undecidable for 2d PAMs.

Hybrid and
Timed
Systems

Eugene Asarin

Hybrid
automata: the
model
An example

Definition of HA
Classes of HA
A couple of
exercises

Verification of
HA

The reachability
problem
The curse of
undecidability
How to verify
HA: theory and
practice

Conclusions of Day 1

We have learned today

• What is a Hybrid Automaton.

• How to read yet another definition of HA and its
semantics.

• How to model things using HA.

• Famous classes of HA.

• Safety verification as reachability problem.

• How to prove undecidability by simulation of Minsky
Machines.

• Even the simplest classes of HA have undecidable
reachability.

Eugene Asarin

Hybrid and
Timed
Systems

Eugene Asarin

Hybrid
automata: the
model
An example

Definition of HA
Classes of HA
A couple of
exercises

Verification of
HA

The reachability
problem
The curse of
undecidability
How to verify
HA: theory and
practice

Abstract algorithm - important

A generic verification algorithm A
Forward breadth-first search

F=Init
repeat

F=F ∪ SuccFlow(F) ∪ SuccJump(F)
until (F∩ Bad)= ∅)| fixpoint | tired
say ”reachable” | ”unreachable” | ”timeout”

Most verification methods and tools are variants of it.

Eugene Asarin
verification

Eugene Asarin

Hybrid and
Timed
Systems

Eugene Asarin

Hybrid
automata: the
model
An example

Definition of HA
Classes of HA
A couple of
exercises

Verification of
HA

The reachability
problem
The curse of
undecidability
How to verify
HA: theory and
practice

Abstract algorithm - important

A generic verification semi-algorithm A
Forward breadth-first search

F=Init
repeat

F=F ∪ SuccFlow(F) ∪ SuccJump(F)
until (F∩ Bad)= ∅)| fixpoint | tired
say ”reachable” | ”unreachable” | ”timeout”

Most verification methods and tools are variants of it.

Hybrid and
Timed
Systems

Eugene Asarin

Hybrid
automata: the
model
An example

Definition of HA
Classes of HA
A couple of
exercises

Verification of
HA

The reachability
problem
The curse of
undecidability
How to verify
HA: theory and
practice

Abstract algorithm - important

A generic verification semi-algorithm A
Forward breadth-first search

F=Init
repeat

F=F ∪ SuccFlow(F) ∪ SuccJump(F)
until (F∩ Bad)= ∅)| fixpoint | tired
say ”reachable” | ”unreachable” | ”timeout”

There are variants:

• forward/backward

• breadth first/depth first/best first/etc.

Most verification methods and tools are variants of it.

Hybrid and
Timed
Systems

Eugene Asarin

Hybrid
automata: the
model
An example

Definition of HA
Classes of HA
A couple of
exercises

Verification of
HA

The reachability
problem
The curse of
undecidability
How to verify
HA: theory and
practice

How to implement it

Needed data structure for representation of subsets of Rn, and
algorithms for efficient computing of

• unions, intersections;

• inclusion tests;

• SuccFlow;

• SuccJump.

Hybrid and
Timed
Systems

Eugene Asarin

Hybrid
automata: the
model
An example

Definition of HA
Classes of HA
A couple of
exercises

Verification of
HA

The reachability
problem
The curse of
undecidability
How to verify
HA: theory and
practice

How to implement it

Needed data structure for representation of subsets of Rn, and
algorithms for efficient computing of

• unions, intersections;

• inclusion tests;

• SuccFlow;

• SuccJump.

It could be exact or over-approximate.

Hybrid and
Timed
Systems

Eugene Asarin

Hybrid
automata: the
model
An example

Definition of HA
Classes of HA
A couple of
exercises

Verification of
HA

The reachability
problem
The curse of
undecidability
How to verify
HA: theory and
practice

Some trivial results

Theorem
If for a class of HA the Algorithm A can be implemented
(exactly), then

• Reach is semi-decidable;

• bounded Reach in n steps is decidable;

• a verification tool can be built.

Eugene Asarin

Hybrid and
Timed
Systems

Eugene Asarin

Hybrid
automata: the
model
An example

Definition of HA
Classes of HA
A couple of
exercises

Verification of
HA

The reachability
problem
The curse of
undecidability
How to verify
HA: theory and
practice

Some trivial results

Theorem
If for a class of HA the Algorithm A can be implemented
(exactly), then

• Reach is semi-decidable;

• bounded Reach in n steps is decidable;

• a verification tool can be built.

Fact
Suppose for a class of HA the Algorithm A can be implemented
approximately. Then we can build a verification tool saying:

• “Unreachable”.

• “Maybe reachable”.

• “ Timeout”.

Eugene Asarin

Hybrid and
Timed
Systems

Eugene Asarin

TA: an
interesting
subclass of HA

Decidability

Automata and
language
theory

Verification of
TA in practice

Part II

Timed Automata

Hybrid and
Timed
Systems

Eugene Asarin

TA: an
interesting
subclass of HA

Decidability

Automata and
language
theory

Verification of
TA in practice

Outline

3 TA: an interesting subclass of HA

4 Decidability

5 Automata and language theory

6 Verification of TA in practice

Hybrid and
Timed
Systems

Eugene Asarin

TA: an
interesting
subclass of HA

Decidability

Automata and
language
theory

Verification of
TA in practice

Outline

3 TA: an interesting subclass of HA

4 Decidability

5 Automata and language theory

6 Verification of TA in practice

Hybrid and
Timed
Systems

Eugene Asarin

TA: an
interesting
subclass of HA

Decidability

Automata and
language
theory

Verification of
TA in practice

Definition of TA

Definition
Timed automata are a subclass of hybrid automata:

Variables x1, . . . , xn, called clocks.

Dynamics ẋi = 1, for all clocks, in all locations.

Guards and invariants Conjunctions of xi < c (or
≤,=, . ≥))with c ∈ N

Resets xi := 0 for some clocks.

Eugene Asarin

Eugene Asarin

Eugene Asarin

Eugene Asarin
x

Eugene Asarin

t

Eugene Asarin
x= temps écoulé après le dernier reset

Eugene Asarin

Hybrid and
Timed
Systems

Eugene Asarin

TA: an
interesting
subclass of HA

Decidability

Automata and
language
theory

Verification of
TA in practice

An example of a timed automaton
• Timed automaton (we forget to write ẋ = 1):

q1 q2

a, x ∈ [1; 2]?

b, x := 0

Hybrid and
Timed
Systems

Eugene Asarin

TA: an
interesting
subclass of HA

Decidability

Automata and
language
theory

Verification of
TA in practice

An example of a timed automaton
• Timed automaton (we forget to write ẋ = 1):

q1 q2

a, x ∈ [1; 2]?

b, x := 0

• Its run

(q1, 0)
1.83
→ (q1, 1.83)

a
→ (q2, 1.83)

4.1
→ (q2, 5.93)

b
→ (q1, 0)

1
→ (q1, 1) →

Hybrid and
Timed
Systems

Eugene Asarin

TA: an
interesting
subclass of HA

Decidability

Automata and
language
theory

Verification of
TA in practice

An example of a timed automaton
• Timed automaton (we forget to write ẋ = 1):

q1 q2

a, x ∈ [1; 2]?

b, x := 0

• Its run

(q1, 0)
1.83
→ (q1, 1.83)

a
→ (q2, 1.83)

4.1
→ (q2, 5.93)

b
→ (q1, 0)

1
→ (q1, 1) →

• Its trace 1.83 a 4.1 b 1 a a timed word

Hybrid and
Timed
Systems

Eugene Asarin

TA: an
interesting
subclass of HA

Decidability

Automata and
language
theory

Verification of
TA in practice

An example of a timed automaton
• Timed automaton (we forget to write ẋ = 1):

q1 q2

a, x ∈ [1; 2]?

b, x := 0

• Its run

(q1, 0)
1.83
→ (q1, 1.83)

a
→ (q2, 1.83)

4.1
→ (q2, 5.93)

b
→ (q1, 0)

1
→ (q1, 1) →

• Its trace 1.83 a 4.1 b 1 a a timed word
• Its timed language: set of all the traces starting in q1,
ending in q2:

{t1 a s1 b t2 a s2 b . . . tn a | ∀i .ti ∈ [1; 2]}

Hybrid and
Timed
Systems

Eugene Asarin

TA: an
interesting
subclass of HA

Decidability

Automata and
language
theory

Verification of
TA in practice

An example of a timed automaton
• Timed automaton (we forget to write ẋ = 1):

q1 q2

a, x ∈ [1; 2]?

b, x := 0

• Its run

(q1, 0)
1.83
→ (q1, 1.83)

a
→ (q2, 1.83)

4.1
→ (q2, 5.93)

b
→ (q1, 0)

1
→ (q1, 1) →

• Its trace 1.83 a 4.1 b 1 a a timed word
• Its timed language: set of all the traces starting in q1,
ending in q2:

{t1 a s1 b t2 a s2 b . . . tn a | ∀i .ti ∈ [1; 2]}

Observation
Clock value of x : time since the last reset of x .

Hybrid and
Timed
Systems

Eugene Asarin

TA: an
interesting
subclass of HA

Decidability

Automata and
language
theory

Verification of
TA in practice

Some simple exercises

Draw timed automata for specifications:

• Request a arrives every 5 minutes.

Hybrid and
Timed
Systems

Eugene Asarin

TA: an
interesting
subclass of HA

Decidability

Automata and
language
theory

Verification of
TA in practice

Some simple exercises

Draw timed automata for specifications:

• Request a arrives every 5 minutes.

• Request a arrives every 5 to 7 minutes.

Hybrid and
Timed
Systems

Eugene Asarin

TA: an
interesting
subclass of HA

Decidability

Automata and
language
theory

Verification of
TA in practice

Some simple exercises

Draw timed automata for specifications:

• Request a arrives every 5 minutes.

• Request a arrives every 5 to 7 minutes.

• a arrives every 5 to 7 minutes; and b arrives every 3 to 10
minutes.

Hybrid and
Timed
Systems

Eugene Asarin

TA: an
interesting
subclass of HA

Decidability

Automata and
language
theory

Verification of
TA in practice

Some simple exercises

Draw timed automata for specifications:

• Request a arrives every 5 minutes.

• Request a arrives every 5 to 7 minutes.

• a arrives every 5 to 7 minutes; and b arrives every 3 to 10
minutes.

• Request a is serviced within 2 minutes by c or rejected
within 1 minute by r .

Hybrid and
Timed
Systems

Eugene Asarin

TA: an
interesting
subclass of HA

Decidability

Automata and
language
theory

Verification of
TA in practice

Some simple exercises

Draw timed automata for specifications:

• Request a arrives every 5 minutes.

• Request a arrives every 5 to 7 minutes.

• a arrives every 5 to 7 minutes; and b arrives every 3 to 10
minutes.

• Request a is serviced within 2 minutes by c or rejected
within 1 minute by r .

• The same, but a arrives every 5 to 7 minutes.

Eugene Asarin

Hybrid and
Timed
Systems

Eugene Asarin

TA: an
interesting
subclass of HA

Decidability

Automata and
language
theory

Verification of
TA in practice

Meditation on TA

Compared to HA
Very restricted: only time progress remains from all physics.

Eugene Asarin

Hybrid and
Timed
Systems

Eugene Asarin

TA: an
interesting
subclass of HA

Decidability

Automata and
language
theory

Verification of
TA in practice

Meditation on TA

Compared to HA
Very restricted: only time progress remains from all physics.

Compared to finite automata
Time and events together. Interesting

Hybrid and
Timed
Systems

Eugene Asarin

TA: an
interesting
subclass of HA

Decidability

Automata and
language
theory

Verification of
TA in practice

Meditation on TA

Compared to HA
Very restricted: only time progress remains from all physics.

Compared to finite automata
Time and events together. Interesting

As modeling formalism
For timed protocols, scheduling, timed aspects of
embedded/real-time software (non-functional). See scheduling
exercise.

Hybrid and
Timed
Systems

Eugene Asarin

TA: an
interesting
subclass of HA

Decidability

Automata and
language
theory

Verification of
TA in practice

Meditation on TA

Compared to HA
Very restricted: only time progress remains from all physics.

Compared to finite automata
Time and events together. Interesting

As modeling formalism
For timed protocols, scheduling, timed aspects of
embedded/real-time software (non-functional). See scheduling
exercise.

As specification formalism
For timed non-functional specifications. See exercises just
above.

Hybrid and
Timed
Systems

Eugene Asarin

TA: an
interesting
subclass of HA

Decidability

Automata and
language
theory

Verification of
TA in practice

Meditation on TA

Compared to HA
Very restricted: only time progress remains from all physics.

Compared to finite automata
Time and events together. Interesting

As modeling formalism
For timed protocols, scheduling, timed aspects of
embedded/real-time software (non-functional). See scheduling
exercise.

As specification formalism
For timed non-functional specifications. See exercises just
above.

Hybrid and
Timed
Systems

Eugene Asarin

TA: an
interesting
subclass of HA

Decidability

Automata and
language
theory

Verification of
TA in practice

Outline

3 TA: an interesting subclass of HA

4 Decidability

5 Automata and language theory

6 Verification of TA in practice

Hybrid and
Timed
Systems

Eugene Asarin

TA: an
interesting
subclass of HA

Decidability

Automata and
language
theory

Verification of
TA in practice

Main theorem

Theorem (Alur, Dill)

Reachability is decidable for timed automata.

Hybrid and
Timed
Systems

Eugene Asarin

TA: an
interesting
subclass of HA

Decidability

Automata and
language
theory

Verification of
TA in practice

Main theorem

Theorem (Alur, Dill)

Reachability is decidable for timed automata.

Classical formulation
Empty language problem is decidable for TA

Eugene Asarin
Unimed language of a timed automaton is regular (and can be computed).

Hybrid and
Timed
Systems

Eugene Asarin

TA: an
interesting
subclass of HA

Decidability

Automata and
language
theory

Verification of
TA in practice

Proof idea

• Split the state space Q ×Rn into regions s.t.
• all the states in one region have the same behavior;
• there are finitely many regions;

Hybrid and
Timed
Systems

Eugene Asarin

TA: an
interesting
subclass of HA

Decidability

Automata and
language
theory

Verification of
TA in practice

Proof idea

• Split the state space Q ×Rn into regions s.t.
• all the states in one region have the same behavior;
• there are finitely many regions;

• Build a region automaton (its states are regions)

Hybrid and
Timed
Systems

Eugene Asarin

TA: an
interesting
subclass of HA

Decidability

Automata and
language
theory

Verification of
TA in practice

Proof idea

• Split the state space Q ×Rn into regions s.t.
• all the states in one region have the same behavior;
• there are finitely many regions;

• Build a finite region automaton (its states are regions)

Hybrid and
Timed
Systems

Eugene Asarin

TA: an
interesting
subclass of HA

Decidability

Automata and
language
theory

Verification of
TA in practice

Proof idea

• Split the state space Q ×Rn into regions s.t.
• all the states in one region have the same behavior;
• there are finitely many regions;

• Build a finite region automaton (its states are regions)

• Test reachability in this region automaton.

Eugene Asarin

Eugene Asarin
use it to recognize the untimed language

Hybrid and
Timed
Systems

Eugene Asarin

TA: an
interesting
subclass of HA

Decidability

Automata and
language
theory

Verification of
TA in practice

Proof idea

• Split the state space Q ×Rn into regions s.t.
• all the states in one region have the same behavior;
• there are finitely many regions;

• Build a finite region automaton (its states are regions)

• Test reachability in this region automaton.

Two difficulties

• What does it mean: the same behavior?

• How to invent it?

Eugene Asarin

Eugene Asarin
use it to recognize the untimed language

Hybrid and
Timed
Systems

Eugene Asarin

TA: an
interesting
subclass of HA

Decidability

Automata and
language
theory

Verification of
TA in practice

Proof idea

• Split the state space Q ×Rn into regions s.t.
• all the states in one region have the same behavior;
• there are finitely many regions;

• Build a finite region automaton (its states are regions)

• Test reachability in this region automaton.

Two difficulties

• What does it mean: the same behavior? Bisimulation.

• How to invent it? A&D invented it using ideas of
Berthomieu (Time Petri nets). In fact it is rather natural.

Eugene Asarin
use it to recognize the untimed language

Eugene Asarin

Hybrid and
Timed
Systems

Eugene Asarin

TA: an
interesting
subclass of HA

Decidability

Automata and
language
theory

Verification of
TA in practice

Region equivalence

Definition
Two states of a TA are region equivalent: (q, x) ≈ (p, y) if

• Same location: p = q

• Same integer parts of clocks: ∀i (0xi1 = 0yi1)

• Same order of fractional parts of clocks
∀i , j ({xi} < {xj} ⇔ {yi} < {yj})

Look at the picture!

Eugene Asarin
<=> x and y satisfy the same constraints of forms
x_3<5 and x_1-x_2<2

Eugene Asarin

Eugene Asarin

Eugene Asarin

Eugene Asarin

Eugene Asarin

Eugene Asarin

Eugene Asarin

Eugene Asarin

Eugene Asarin

Eugene Asarin

Eugene Asarin

Eugene Asarin

Eugene Asarin

Eugene Asarin

Eugene Asarin

Hybrid and
Timed
Systems

Eugene Asarin

TA: an
interesting
subclass of HA

Decidability

Automata and
language
theory

Verification of
TA in practice

Region equivalence

Definition
Two states of a TA are region equivalent: (q, x) ≈ (p, y) if

• Same location: p = q

• Same integer parts of clocks: ∀i (0xi1 = 0yi1)

• Same order of fractional parts of clocks
∀i , j ({xi} < {xj} ⇔ {yi} < {yj})

Look at the picture!

An issue

• Infinitely many equivalence classes.

Hybrid and
Timed
Systems

Eugene Asarin

TA: an
interesting
subclass of HA

Decidability

Automata and
language
theory

Verification of
TA in practice

Region equivalence

Definition
Two states of a TA are region equivalent: (q, x) ≈ (p, y) if

• Same location: p = q

• Same integer parts of small clocks: ∀smalli (0xi1 = 0yi1)

• Same order of fractional parts small of clocks
∀smalli , j ({xi} < {xj} ⇔ {yi} < {yj})

• Or they are both big : ∀i ((xi > M) ⇔ (yi > M))

Look at the picture!

An issue, and a solution

finitely many equivalence classes.

• Solution: when a variable is BIG, we don’t care about it.

Hybrid and
Timed
Systems

Eugene Asarin

TA: an
interesting
subclass of HA

Decidability

Automata and
language
theory

Verification of
TA in practice

Region equivalence

Definition
Two states of a TA are region equivalent: (q, x) ≈ (p, y) if

• Same location: p = q

• Same integer parts of small clocks: ∀smalli (0xi1 = 0yi1)

• Same order of fractional parts small of clocks
∀smalli , j ({xi} < {xj} ⇔ {yi} < {yj})

• Or they are both big : ∀i ((xi > M) ⇔ (yi > M))

Look at the picture!

An issue

finitely many equivalence classes.

• Solution: when a variable is BIG, we don’t care about it.

Definition
Equivalence classes of ≈ are called regions.

Hybrid and
Timed
Systems

Eugene Asarin

TA: an
interesting
subclass of HA

Decidability

Automata and
language
theory

Verification of
TA in practice

Region equivalence is a
bisimulation

very informal
Equivalent states can make the same transitions, and arrive to
equivalent states.

Hybrid and
Timed
Systems

Eugene Asarin

TA: an
interesting
subclass of HA

Decidability

Automata and
language
theory

Verification of
TA in practice

Region equivalence is a
bisimulation

very informal
Equivalent states can make the same transitions, and arrive to
equivalent states.

Let us formalize it:

Lemma
Suppose (q, x) ≈ (p, y). Then

Jump If (q, x)
a
→ (q′, x′) then (p, y)

a
→ (p′, y′) with

(q′, x′) ≈ (p′, y′).

Time If (q, x)
t
→ (q′, x′) then (p, y)

t̂
→ (p′, y′) with

(q′, x′) ≈ (p′, y′) (the time can be different!).

Eugene Asarin
time-abstract bisimulation

Hybrid and
Timed
Systems

Eugene Asarin

TA: an
interesting
subclass of HA

Decidability

Automata and
language
theory

Verification of
TA in practice

Reading a timed word

Iterating the previous lemma we get

Lemma
Suppose (q, x) ≈ (p, y), and q

w
→ (q′, x′) (with some timed

word w), then (p, y)
ŵ
→ (p′, y′) with (q′, x′) ≈ (p′, y′) (the

timing in ŵ can be different from w).

Eugene Asarin
The untiming is the same

Hybrid and
Timed
Systems

Eugene Asarin

TA: an
interesting
subclass of HA

Decidability

Automata and
language
theory

Verification of
TA in practice

Reading a timed word

Iterating the previous lemma we get

Lemma
Suppose (q, x) ≈ (p, y), and q

w
→ (q′, x′) (with some timed

word w), then (p, y)
ŵ
→ (p′, y′) with (q′, x′) ≈ (p′, y′) (the

timing in ŵ can be different from w).

Corollary
The same set of regions is reachable from elements of one
region.

Eugene Asarin
The untiming is the same

Eugene Asarin
(using the same untiming)

Hybrid and
Timed
Systems

Eugene Asarin

TA: an
interesting
subclass of HA

Decidability

Automata and
language
theory

Verification of
TA in practice

Decision algorithm

• Build a region automaton RA
• States are regions.
• There is a transition r1

a
→ r2 if some (all) element of r1 can

go to some element of r2 on a.
• There is a transition r1

τ

→ r2 if some (all) element of r1 can
go to some element of r2 on some t > 0

Eugene Asarin
(𝜏 should be ε)

Eugene Asarin

Eugene Asarin

Eugene Asarin
Untiming

Hybrid and
Timed
Systems

Eugene Asarin

TA: an
interesting
subclass of HA

Decidability

Automata and
language
theory

Verification of
TA in practice

Decision algorithm

• Build a region automaton RA
• States are regions.
• There is a transition r1

a
→ r2 if some (all) element of r1 can

go to some element of r2 on a.
• There is a transition r1

τ

→ r2 if some (all) element of r1 can
go to some element of r2 on some t > 0

• Check whether some final region in RA is reachable from
initial region.

Eugene Asarin

Eugene Asarin
RA recognizes the untiming of the initial language

Eugene Asarin

Eugene Asarin
Untiming

Eugene Asarin
initial states of RA: regions of (i,0) for initial i of TA

Eugene Asarin
final states of RA: regions of (f,x) for final f of TA, and any x

Hybrid and
Timed
Systems

Eugene Asarin

TA: an
interesting
subclass of HA

Decidability

Automata and
language
theory

Verification of
TA in practice

Outline

3 TA: an interesting subclass of HA

4 Decidability

5 Automata and language theory

6 Verification of TA in practice

Hybrid and
Timed
Systems

Eugene Asarin

TA: an
interesting
subclass of HA

Decidability

Automata and
language
theory

Verification of
TA in practice

Closure property

Definition
Timed regular language is a language accepted by a TA

Hybrid and
Timed
Systems

Eugene Asarin

TA: an
interesting
subclass of HA

Decidability

Automata and
language
theory

Verification of
TA in practice

Closure property

Definition
Timed regular language is a language accepted by a TA

Theorem
Timed regular languages are closed under ∩,∪, projection, but
not complementation.

Hybrid and
Timed
Systems

Eugene Asarin

TA: an
interesting
subclass of HA

Decidability

Automata and
language
theory

Verification of
TA in practice

Closure property

Definition
Timed regular language is a language accepted by a TA

Theorem
Timed regular languages are closed under ∩,∪, projection, but
not complementation.

Fact
Determinization impossible for timed automata.

Hybrid and
Timed
Systems

Eugene Asarin

TA: an
interesting
subclass of HA

Decidability

Automata and
language
theory

Verification of
TA in practice

Decidability properties

Definition
Timed regular language (TRL) is a language accepted by a TA

Hybrid and
Timed
Systems

Eugene Asarin

TA: an
interesting
subclass of HA

Decidability

Automata and
language
theory

Verification of
TA in practice

Decidability properties

Definition
Timed regular language (TRL) is a language accepted by a TA

Theorem
Decidable for TRL (represented by TA): L = ∅, w ∈ L,
L ∩M = ∅.

Hybrid and
Timed
Systems

Eugene Asarin

TA: an
interesting
subclass of HA

Decidability

Automata and
language
theory

Verification of
TA in practice

Decidability properties

Definition
Timed regular language (TRL) is a language accepted by a TA

Theorem
Decidable for TRL (represented by TA): L = ∅, w ∈ L,
L ∩M = ∅.

Proof.
Immediate from Alur&Dill’s theorem.

Hybrid and
Timed
Systems

Eugene Asarin

TA: an
interesting
subclass of HA

Decidability

Automata and
language
theory

Verification of
TA in practice

Decidability properties

Definition
Timed regular language (TRL) is a language accepted by a TA

Theorem
Decidable for TRL (represented by TA): L = ∅, w ∈ L,
L ∩M = ∅.

Theorem
Undecidable for TRL (represented by TA): L universal (contains
all the timed words), L ⊂ M, L = M.

Hybrid and
Timed
Systems

Eugene Asarin

TA: an
interesting
subclass of HA

Decidability

Automata and
language
theory

Verification of
TA in practice

Decidability properties

Definition
Timed regular language (TRL) is a language accepted by a TA

Theorem
Decidable for TRL (represented by TA): L = ∅, w ∈ L,
L ∩M = ∅.

Theorem
Undecidable for TRL (represented by TA): L universal (contains
all the timed words), L ⊂ M, L = M.

Proof.
Encoding of runs of Minsky Machine as a timed languages.

Hybrid and
Timed
Systems

Eugene Asarin

TA: an
interesting
subclass of HA

Decidability

Automata and
language
theory

Verification of
TA in practice

Reminder: regular expressions

Definition
Regular expressions: E ::= 0 | ε | a | E + E | E · E | E ∗

Theorem (Kleene)

Finite automata and regular expression define the same class of
languages.

Hybrid and
Timed
Systems

Eugene Asarin

TA: an
interesting
subclass of HA

Decidability

Automata and
language
theory

Verification of
TA in practice

Reminder: regular expressions

Definition
Regular expressions: E ::= 0 | ε | a | E + E | E · E | E ∗

Theorem (Kleene)

Finite automata and regular expression define the same class of
languages.

Example

q p r

a,b

a

b

((a + b)a)∗(a + b)b

Hybrid and
Timed
Systems

Eugene Asarin

TA: an
interesting
subclass of HA

Decidability

Automata and
language
theory

Verification of
TA in practice

Timed regular expressions

A natural question
How to define regular expressions for timed languages?

Hybrid and
Timed
Systems

Eugene Asarin

TA: an
interesting
subclass of HA

Decidability

Automata and
language
theory

Verification of
TA in practice

Timed regular expressions

A natural question
How to define regular expressions for timed languages?

E ::= 0 | ε | t | a | E + E | E · E | E ∗ | 〈E 〉I | E ∧ E | [a 6→ z]E

Hybrid and
Timed
Systems

Eugene Asarin

TA: an
interesting
subclass of HA

Decidability

Automata and
language
theory

Verification of
TA in practice

Timed regular expressions

A natural question
How to define regular expressions for timed languages?

E ::= 0 | ε | t | a | E + E | E · E | E ∗ | 〈E 〉I | E ∧ E | [a 6→ z]E

Semantics:

‖t‖ = R≥0 ‖a‖ = {a} ‖0‖ = ∅ ‖ε‖ = {ε}

‖E1 · E2‖ = ‖E1‖ · ‖E2‖ ‖E1 + E2‖ = ‖E1‖ ∪ ‖E2‖

‖〈E 〉‖I = {σ ∈ ‖E‖ | #(σ) ∈ I} ‖E ∗‖ = ‖E‖∗

‖E1 ∧ E2‖ = ‖E1‖ ∩ ‖E2‖ ‖[a 6→ z]E‖ = [a 6→ z]‖E‖

Hybrid and
Timed
Systems

Eugene Asarin

TA: an
interesting
subclass of HA

Decidability

Automata and
language
theory

Verification of
TA in practice

A good example and a theorem

q1 q2

a, x ∈ [1; 2]?

b, x := 0

{L = {t1 a s1 b t2 a s2 b . . . tn a | ∀i .ti ∈ [1; 2]}

Hybrid and
Timed
Systems

Eugene Asarin

TA: an
interesting
subclass of HA

Decidability

Automata and
language
theory

Verification of
TA in practice

A good example and a theorem

q1 q2

a, x ∈ [1; 2]?

b, x := 0

{L = {t1 a s1 b t2 a s2 b . . . tn a | ∀i .ti ∈ [1; 2]}

An expression for L :
(

〈ta〉[1;2]tb
)∗

Theorem (A., Caspi, Maler)

Timed Automata and Timed regular expressions (with ∧ and
[a 6→ z]) define the same class of timed languages

Hybrid and
Timed
Systems

Eugene Asarin

TA: an
interesting
subclass of HA

Decidability

Automata and
language
theory

Verification of
TA in practice

A nasty example

Intersection needed [ACM]

a
x2 := 0

b
x1 = 1?

c
x2 = 1?

{t1at2bt3c | t1 + t2 = 1, t2 + t3 = 1} = ta〈tbtc〉1 ∧ 〈tatb〉1tc

Eugene Asarin

Eugene Asarin

Hybrid and
Timed
Systems

Eugene Asarin

TA: an
interesting
subclass of HA

Decidability

Automata and
language
theory

Verification of
TA in practice

Another nasty example

Renaming needed [Herrmann]

y := 0 x = 1? y = 1?

a

a a a

a

[b 6→ a]
(

(ta)∗〈tb(ta)∗〉1 ∧ 〈(ta)∗tb〉1(ta)
∗
)

.

Hybrid and
Timed
Systems

Eugene Asarin

TA: an
interesting
subclass of HA

Decidability

Automata and
language
theory

Verification of
TA in practice

Outline

3 TA: an interesting subclass of HA

4 Decidability

5 Automata and language theory

6 Verification of TA in practice

Hybrid and
Timed
Systems

Eugene Asarin

TA: an
interesting
subclass of HA

Decidability

Automata and
language
theory

Verification of
TA in practice

Model-checking etc.

Reminder: decidability for TA

• We can decide: Reach, L)= ∅, L ∩M = ∅, w ∈ L

• Undecidable: L = all the words; L ⊂ M, L = M

Eugene Asarin
PSPACE-complete

Hybrid and
Timed
Systems

Eugene Asarin

TA: an
interesting
subclass of HA

Decidability

Automata and
language
theory

Verification of
TA in practice

Model-checking etc.

Reminder: decidability for TA

• We can decide: Reach, L)= ∅, L ∩M = ∅, w ∈ L

• Undecidable: L = all the words; L ⊂ M, L = M

Verification problem
Given a system S and a property P, verify that S satisfies P.

Hybrid and
Timed
Systems

Eugene Asarin

TA: an
interesting
subclass of HA

Decidability

Automata and
language
theory

Verification of
TA in practice

Verification approaches

For simple safety properties:

• Represent S by a TA AS .

• Represent P as ¬Reach(Init,Bad).

• Apply reachability algorithm.

For all kind of properties
(even with ω-behaviors)

• Represent S by a TA AS .

• Represent ¬P by a TA A¬P .

• Check that L(AS) ∩ L(A¬P) = ∅

Eugene Asarin
Empty language

Eugene Asarin
(empty language)

Eugene Asarin
language = possible behaviors

Eugene Asarin
language=bad behaviors

Hybrid and
Timed
Systems

Eugene Asarin

TA: an
interesting
subclass of HA

Decidability

Automata and
language
theory

Verification of
TA in practice

Verification approaches

For simple safety properties:

• Represent S by a TA AS .

• Represent P as ¬Reach(Init,Bad).

• Apply reachability algorithm.

For all kind of properties
(even with ω-behaviors)

• Represent S by a TA AS .

• Represent ¬P by a TA A¬P .

• Check that L(AS) ∩ L(A¬P) = ∅

Or express P in a temporal logic and use some model-checking.

Hybrid and
Timed
Systems

Eugene Asarin

TA: an
interesting
subclass of HA

Decidability

Automata and
language
theory

Verification of
TA in practice

A simple verification example

Exercise
How to verify this?

System A bus passes every 7 to 9 minutes. A taxi passes
every 6 to 8 minutes. At noon a bus and a taxi
passed.

Property Between 12:05 and 12:30, within 5 minutes after
every bus, a taxi passes.

Hybrid and
Timed
Systems

Eugene Asarin

TA: an
interesting
subclass of HA

Decidability

Automata and
language
theory

Verification of
TA in practice

Reachability in practice: no regions

Fact
Real verification tools, e.g. Uppaal, do not use the region
automaton. They apply a variant of the algorithm we know.

Hybrid and
Timed
Systems

Eugene Asarin

TA: an
interesting
subclass of HA

Decidability

Automata and
language
theory

Verification of
TA in practice

Reachability in practice: no regions

Fact
Real verification tools, e.g. Uppaal, do not use the region
automaton. They apply a variant of the algorithm we know.

Algorithm B

F=Init
repeat

F=F ∪ SuccFlow(F) ∪ SuccJump(F)
Widen(F)

until (F∩ Final)= ∅)| fixpoint
say ”reachable” | ”unreachable”

Hybrid and
Timed
Systems

Eugene Asarin

TA: an
interesting
subclass of HA

Decidability

Automata and
language
theory

Verification of
TA in practice

Zones and DBMs

What is needed to implement Algorithm B
Data structure and basic algorithms for subsets of Q × Rn

Hybrid and
Timed
Systems

Eugene Asarin

TA: an
interesting
subclass of HA

Decidability

Automata and
language
theory

Verification of
TA in practice

Zones and DBMs

What is needed to implement Algorithm B
Data structure and basic algorithms for subsets of Q × Rn

Definition
Let x0 = 0; let x1, . . . , xn - clocks.

• Zone: polyhedron defined by a conjunction of constraints
xi − xj ≤ dij (or <) wirh dIJ ∈ N.

• Difference bound matrix (DBM) for a zone: D = (dij).

Fact
A zone is a union of regions.

Hybrid and
Timed
Systems

Eugene Asarin

TA: an
interesting
subclass of HA

Decidability

Automata and
language
theory

Verification of
TA in practice

Zones and verification of TA

Fact
Using DBMs, the following tests and operations on zones are
easy (O(n)−O(n3)):

• Z1 = Z2?; Z = ∅?; Z1 ∩ Z2.

• SuccFlow(Z) and Succδ(Z) - both are zones.

Hybrid and
Timed
Systems

Eugene Asarin

TA: an
interesting
subclass of HA

Decidability

Automata and
language
theory

Verification of
TA in practice

Zones and verification of TA

Fact
Using DBMs, the following tests and operations on zones are
easy (O(n)−O(n3)):

• Z1 = Z2?; Z = ∅?; Z1 ∩ Z2.

• SuccFlow(Z) and Succδ(Z) - both are zones.

See Cormen, graph algorithms.

Hybrid and
Timed
Systems

Eugene Asarin

TA: an
interesting
subclass of HA

Decidability

Automata and
language
theory

Verification of
TA in practice

Zones and verification of TA

Fact
Using DBMs, the following tests and operations on zones are
easy (O(n)−O(n3)):

• Z1 = Z2?; Z = ∅?; Z1 ∩ Z2.

• SuccFlow(Z) and Succδ(Z) - both are zones.

Corollary
Unions of zones, represented (q1,D1), . . . (qn,Dn), are suitable
to implement Algorithm B

Hybrid and
Timed
Systems

Eugene Asarin

TA: an
interesting
subclass of HA

Decidability

Automata and
language
theory

Verification of
TA in practice

Termination

Algorithm B

F=Init
repeat

F=F ∪ SuccFlow(F) ∪ SuccJump(F)
Widen(F)

until (F∩ Final)= ∅)| fixpoint
say ”reachable” | ”unreachable”

Hybrid and
Timed
Systems

Eugene Asarin

TA: an
interesting
subclass of HA

Decidability

Automata and
language
theory

Verification of
TA in practice

Termination

Algorithm B

F=Init
repeat

F=F ∪ SuccFlow(F) ∪ SuccJump(F)
Widen(F)

until (F∩ Final)= ∅)| fixpoint
say ”reachable” | ”unreachable”

To ensure termination we must widen
In each DBM, when cij > M replace cij := ∞.

Eugene Asarin
When C_ij <-M replace c_ij:=-M

Hybrid and
Timed
Systems

Eugene Asarin

TA: an
interesting
subclass of HA

Decidability

Automata and
language
theory

Verification of
TA in practice

Termination

Algorithm B

F=Init
repeat

F=F ∪ SuccFlow(F) ∪ SuccJump(F)
Widen(F)

until (F∩ Final)= ∅)| fixpoint
say ”reachable” | ”unreachable”

To ensure termination we must widen
In each DBM, when cij > M replace cij := ∞.

Theorem
Algorithm B is correct and terminates (and used in practice)

Eugene Asarin
When C_ij <-M replace c_ij:=-M

Hybrid and
Timed
Systems

Eugene Asarin

Decision by
reduction to
TA

Decision using
finite
bisimulations

Decision using
planar
topology

Part III

Back to Hybrid automata: decidability

Hybrid and
Timed
Systems

Eugene Asarin

Decision by
reduction to
TA

Decision using
finite
bisimulations

Decision using
planar
topology

Outline

7 Decision by reduction to TA

8 Decision using finite bisimulations

9 Decision using planar topology

Hybrid and
Timed
Systems

Eugene Asarin

Decision by
reduction to
TA

Decision using
finite
bisimulations

Decision using
planar
topology

Outline

7 Decision by reduction to TA

8 Decision using finite bisimulations

9 Decision using planar topology

Hybrid and
Timed
Systems

Eugene Asarin

Decision by
reduction to
TA

Decision using
finite
bisimulations

Decision using
planar
topology

Reduction to TA : simple cases

Fact
Reachability is decidable for the following subclasses of HA, it
is reduced to TA reachability.

• Like TA, rational constants.

Hybrid and
Timed
Systems

Eugene Asarin

Decision by
reduction to
TA

Decision using
finite
bisimulations

Decision using
planar
topology

Reduction to TA : simple cases

Fact
Reachability is decidable for the following subclasses of HA, it
is reduced to TA reachability.

• Like TA, rational constants.
Reduction: Multiply all the guards by the common
denominator K, you obtain a timed automaton with the
same reachability (location to location).

Hybrid and
Timed
Systems

Eugene Asarin

Decision by
reduction to
TA

Decision using
finite
bisimulations

Decision using
planar
topology

Reduction to TA : simple cases

Fact
Reachability is decidable for the following subclasses of HA, it
is reduced to TA reachability.

• Like TA, rational constants.

• Like TA, but the rate of each clock = arbitrary rational:
ẋi = ri (the same everywhere).

Hybrid and
Timed
Systems

Eugene Asarin

Decision by
reduction to
TA

Decision using
finite
bisimulations

Decision using
planar
topology

Reduction to TA : simple cases

Fact
Reachability is decidable for the following subclasses of HA, it
is reduced to TA reachability.

• Like TA, rational constants.

• Like TA, but the rate of each clock = arbitrary rational:
ẋi = ri (the same everywhere).
Reduction: Change of variables x̄i = xi/ri (and
corresponding change guards) transform the system into a
TA with the same reachability.

Hybrid and
Timed
Systems

Eugene Asarin

Decision by
reduction to
TA

Decision using
finite
bisimulations

Decision using
planar
topology

Reduction to TA : simple cases

Fact
Reachability is decidable for the following subclasses of HA, it
is reduced to TA reachability.

• Like TA, rational constants.

• Like TA, but the rate of each clock = arbitrary rational:
ẋi = ri (the same everywhere).

• Initialized skewed-clock automata Like TA, but in a
state q we have that ẋi = riq (may depend on the state).
Restriction:when we change rate, we forget the value.
Formally, for any transition p → q, either rip = riq or xi is
reset.

Hybrid and
Timed
Systems

Eugene Asarin

Decision by
reduction to
TA

Decision using
finite
bisimulations

Decision using
planar
topology

Reduction to TA : simple cases

Fact
Reachability is decidable for the following subclasses of HA, it
is reduced to TA reachability.

• Like TA, rational constants.

• Like TA, but the rate of each clock = arbitrary rational:
ẋi = ri (the same everywhere).

• Initialized skewed-clock automata Like TA, but in a
state q we have that ẋi = riq (may depend on the state).
Restriction:when we change rate, we forget the value.
Formally, for any transition p → q, either rip = riq or xi is
reset.
Reduction: Change of variables x̄i = xi/riq at state q. It
works because of the restriction.

Hybrid and
Timed
Systems

Eugene Asarin

Decision by
reduction to
TA

Decision using
finite
bisimulations

Decision using
planar
topology

Rectangular Hybrid Automata

Let us generalize
We want to extend the previous example to the largest possible
decidable class.

Hybrid and
Timed
Systems

Eugene Asarin

Decision by
reduction to
TA

Decision using
finite
bisimulations

Decision using
planar
topology

Rectangular Hybrid Automata

Let us generalize
We want to extend the previous example to the largest possible
decidable class.

Definition
The class of Rectangular Hybrid automata is defined as follows:

• Variables x1, . . . xn.

• Dynamics at each state q : inclusion ẋi ∈ [aiq, biq] (for
each i)

• Invariant at each state q, and guard of each transition :
xi ∈ [a., b.]

• Reset on each transition : either xi is unchanged, or it is
set to an arbitrary point of some interval : xi :∈ [a., b.] .

Hybrid and
Timed
Systems

Eugene Asarin

Decision by
reduction to
TA

Decision using
finite
bisimulations

Decision using
planar
topology

Rectangular Hybrid Automata

Let us generalize
We want to extend the previous example to the largest possible
decidable class.

Definition
The class of Rectangular Hybrid automata is defined as follows:

• Variables x1, . . . xn.

• Dynamics at each state q : inclusion ẋi ∈ [aiq, biq] (for
each i)

• Invariant at each state q, and guard of each transition :
xi ∈ [a., b.]

• Reset on each transition : either xi is unchanged, or it is
set to an arbitrary point of some interval : xi :∈ [a., b.] .

Fact
Reachability is undecidable for RHA.

Hybrid and
Timed
Systems

Eugene Asarin

Decision by
reduction to
TA

Decision using
finite
bisimulations

Decision using
planar
topology

Initialized Rectangular Hybrid
Automata

To obtain reachability one needs a restriction:

Definition (When we change rate, we forget the value)

Initialized RHA should reset xi on each transition that changes
its rate.

Hybrid and
Timed
Systems

Eugene Asarin

Decision by
reduction to
TA

Decision using
finite
bisimulations

Decision using
planar
topology

Initialized Rectangular Hybrid
Automata

To obtain reachability one needs a restriction:

Definition (When we change rate, we forget the value)

Initialized RHA should reset xi on each transition that changes
its rate.

Theorem (Henzinger et al.)

Reachability is decidable for Initialized RHA.

Hybrid and
Timed
Systems

Eugene Asarin

Decision by
reduction to
TA

Decision using
finite
bisimulations

Decision using
planar
topology

Initialized Rectangular Hybrid
Automata

To obtain reachability one needs a restriction:

Definition (When we change rate, we forget the value)

Initialized RHA should reset xi on each transition that changes
its rate.

Theorem (Henzinger et al.)

Reachability is decidable for Initialized RHA.

Probably the “largest” known decidable class of HA!

Hybrid and
Timed
Systems

Eugene Asarin

Decision by
reduction to
TA

Decision using
finite
bisimulations

Decision using
planar
topology

Outline

7 Decision by reduction to TA

8 Decision using finite bisimulations

9 Decision using planar topology

Hybrid and
Timed
Systems

Eugene Asarin

Decision by
reduction to
TA

Decision using
finite
bisimulations

Decision using
planar
topology

o-minimal automata

They have a complex, sometimes nonlinear dynamic, but they
also forget the variable, when its equation changes.

Hybrid and
Timed
Systems

Eugene Asarin

Part IV

Conclusions and perspectives

Hybrid and
Timed
Systems

Eugene Asarin

Timed: Conclusions for a
pragmatical user

• A useful and proper model of computer systems immersed
in physical time : TA.

• Modeling and specification languages available.

• Efficient simulation, verification and synthesis tools
available.

Hybrid and
Timed
Systems

Eugene Asarin

Timed: perspectives for a
researcher

• Develop a theory of timed languages. Algebra, logic,
topology etc. (see my text
http://hal.archives-ouvertes.fr/hal-00157685)

• Improve verification techniques.

• Study rich and decidable specification formalisms (logical,
algebraic, etc.) for timed languages.

• etc.

http://hal.archives-ouvertes.fr/hal-00157685
Eugene Asarin
Quantitative verification
Information theory
Runtime verification/monitoring
Pattern-matching
Machine learning

	Hybrid Automata
	Hybrid automata: the model
	An example
	Definition of HA
	Classes of HA
	A couple of exercises

	Verification of HA
	The reachability problem
	The curse of undecidability
	How to verify HA: theory and practice

	Timed Automata
	TA: an interesting subclass of HA
	Decidability
	Automata and language theory
	Verification of TA in practice

	Back to Hybrid automata: decidability
	Decision by reduction to TA
	Decision using finite bisimulations
	Decision using planar topology

	Conclusions and perspectives

