

Hybrid and Timed Systems Eugene Asarin

Introduction

Cyber-Physical!

Introductory equations

▲日▼▲□▼▲□▼▲□▼ □ のので

Hybrid Systems

- Hybrid Systems = Discrete+Continuous
- Hybrid Automata = A model of Hybrid systems

Original motivation= Physical plant + Digital controller

New applications = biology, economy, numerics, circuits

Hybrid community = Control scientists + Applied mathematicians + Some computer scientists

Hybrid and Timed Systems Eugene Asarin

Introduction

Cyber-Physical

Introductory equations

Hybrid Systems

- Hybrid Systems = Discrete+Continuous
- Hybrid Automata = A model of Hybrid systems

Original motivation = Physical plant + Digital controller

- **New applications** = biology, economy, numerics, circuits
- Hybrid community = Control scientists + Applied

mathematicians + XXX computer scientists

Timed Systems

and a nice automata/ languages theory

- Timed Systems = Discrete behavior+Continuous Time
- Timed Automata = A subclass of Hybrid automata
- The starting point = A beautiful result by Alur & Dill.
- Applications = Real-time digital system, etc...
- Timed community = Computer scientists.

Global Outline

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Eugene Asarin

Introduction

- 1 Hybrid Automata (see Laurent Fribourg's lectures)
- 2 Timed Automata
- **3** Back to Hybrid: Decidable Subclasses

Eugene Asarin

Hybrid automata: the model

An example Definition of HA Classes of HA A couple of exercises

Verification of HA

The reachability problem

I he curse of undecidability

How to verify HA: theory and practice

Part I

Hybrid Automata

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Eugene Asarin

Hybrid automata: th model

An example Definition of HA Classes of HA A couple of exercises

Verification of HA

The reachability problem

The curse of undecidability

How to verify HA: theory and practice

1 Hybrid automata: the model

An example Definition of HA Classes of HA A couple of exercises

2 Verification of HA

The reachability problem The curse of undecidability How to verify HA: theory and practice

Outline

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

-

Eugene Asarin

Hybrid automata: the model

An example Definition of H/ Classes of HA A couple of exercises

Verification of HA

The reachability problem

The curse of undecidability

How to verify HA: theory and practice

1 Hybrid automata: the model

An example Definition of HA Classes of HA A couple of exercises

Verification of HA The reachability problem The curse of undecidability How to verify HA: theory and practice

Outline

ヘロン 人間 とくほと 人ほとう

-

Eugene Asarin

Hybrid automata: the model

An example Definition of HA Classes of HA A couple of exercises

Verification of HA

- The reachability problem
- The curse of undecidability
- How to verify HA: theory and practice

The first (cyber-physical) example

▲ロト ▲□ト ▲ヨト ▲ヨト ヨー のくで

Notation

For
$$x = x(t)$$
 we write $\dot{x} = \dot{x}(t) = x'(t) = dx/dt$.

Eugene Asarin

Hybrid automata: the model

An example

Definition of HA Classes of HA A couple of exercises

Verification of HA

The reachability problem

The curse of undecidability

How to verify HA: theory and practice

The first (cyber-physical) example

Notation

For
$$x = x(t)$$
 we write $\dot{x} = \dot{x}(t) = x'(t) = dx/dt$.

 $\bullet\,$ When the heater is OFF, the room cools down :

$$\dot{x} = -x$$

• When it is ON, the room heats:

$$\dot{x} = H - x$$

000

Eugene Asarin

Hybrid automata: the model

An example Definition of HA Classes of HA A couple of exercises

Verification of HA

- The reachability problem
- I he curse of undecidability
- How to verify HA: theory and practice

The first (cyber-physical) example

Notation For x = x(t) we write $\dot{x} = \dot{x}(t) = x'(t) = dx/dt$.

A thermostat

• When the heater is OFF, the room cools down :

$$\dot{x} = -x$$

• When it is ON, the room heats:

$$\dot{x} = H - x$$

A D > 4 (20) + 4 + 4

• When $\gg M$ it switches OFF

X

• When < m it switches ON

Eugene Asarin

Hybrid automata: the model

An example Definition of HA Classes of HA A couple of exercises

Verification of HA

- The reachability problem The curse of
- undecidability How to verify HA: theory and
- practice

The first (cyber-physical) example

Notation

For
$$x = x(t)$$
 we write $\dot{x} = \dot{x}(t) = x'(t) = dx/dt$.

A thermostat

 $\bullet\,$ When the heater is OFF, the room cools down :

$$\dot{x} = -x$$

• When it is ON, the room heats:

$$\dot{x} = H - x$$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

-

- When t > M it switches OFF
- When t < m it switches ON

A strange creature. . .

Eugene Asarin

Hybrid automata: the model

An example Definition of HA Classes of HA A couple of exercises

Verification of HA

The reachability problem The curse of undecidability

How to verify HA: theory and practice

Some mathematicians prefer to write

 $\dot{x} = f(x,q)$

where

$$f(x, Off) = -x$$

$$f(x, On) = H - x$$

with some switching rules on q.

A bad syntax

▲ロト ▲□ト ▲ヨト ▲ヨト ヨー のくで

Eugene Asarin

Hybrid automata: the model

An example Definition of HA Classes of HA A couple of exercises

Verification of HA

The reachability problem The curse of undecidability How to verify

HA: theory and practice

Some mathematicians prefer to write

$$\dot{x} = f(x,q)$$

where

$$f(x, Off) = -x$$

$$f(x, On) = H - x$$

with some switching rules on q.

But we are computer scientists and draw an *automaton*

A bad syntax

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Eugene Asarin

Hybrid automata: the model

An example

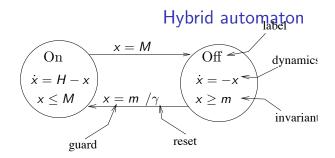
Definition of HA Classes of HA A couple of exercises

Verification of HA

The reachability problem

The curse of undecidability

How to verify HA: theory and practice



イロト 不得 とくほと イヨト

3

A formal definition: It is a tuple ...

Eugene Asarin

Hybrid automata: the model

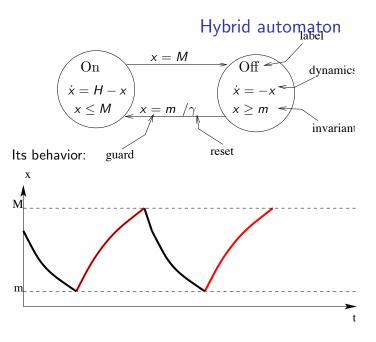
An example

Definition of HA Classes of HA A couple of exercises

Verification o HA

The reachability problem The curse of undecidability How to verify

HA: theory and practice



Eugene Asarin

Hybrid automata: the model

An example

Definition of HA

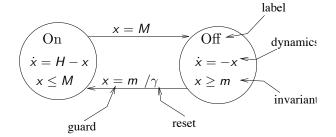
A couple of exercises

Verification HA

The reachability problem

The curse of undecidability

How to verify HA: theory and practice



◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ● ● ● ●

Eugene Asarin

Hybrid automata: the model

An example

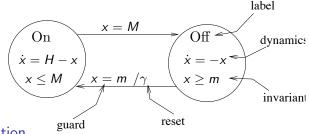
Definition of HA

A couple of exercises

Verification of HA

The reachability problem The curse of

undecidability How to verify HA: theory and practice



▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Definition

A hybrid automaton is $H = (Q, X, \Sigma, Dyn, I, \Delta)$ with

- Q finite set of locations
- $X = \mathbb{R}^n$, continuous state space
- *Dyn*, dynamics on X for every $q \in Q$
- I, invariant, staying condition in X
- Δ , finite set of transitions $\delta = (p, q, a, g, r)$

Eugene Asarin

Hybrid automata: the model

An example

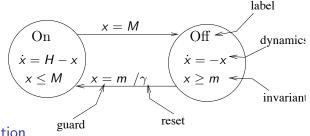
Definition of HA

A couple of exercises

Verification o HA

The reachability problem The curse of

How to verify HA: theory and practice



Definition

A hybrid automaton is $H = (Q, X, \Sigma, Dyn, I, \Delta)$ with

- Q finite set of locations
- X = ℝⁿ, continuous state space, a point in X = valuation of continuous variables x = x₁,..., x_n

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- *Dyn*, dynamics on X for every $q \in Q$
- I, invariant, staying condition in X
- Δ , finite set of transitions $\delta = (p, q, a, g, r)$

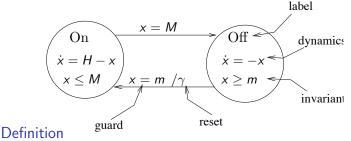
Eugene Asarin

Hybrid automata: the model

- An example Definition of HA
- A couple of exercises

Verification of HA

- The reachability problem
- The curse of undecidabilit
- How to verify HA: theory and practice



- A hybrid automaton is $H = (Q, X, \Sigma, Dyn, I, \Delta)$ with
 - Q finite set of locations
 - $X = \mathbb{R}^n$, continuous state space
 - Dyn, dynamics on X for every q ∈ Q, Dyn(q) = f_q, whenever in location q the continuous state obeys x = f_q(x).

▲日▼▲□▼▲□▼▲□▼ □ のので

- I, invariant, staying condition in X
- Δ , finite set of transitions $\delta = (p, q, a, g, r)$

Eugene Asarin

Hybrid automata: the model

An example

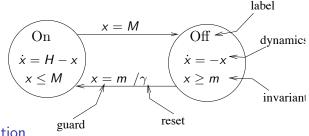
Definition of HA

A couple of exercises

Verification o HA

The reachability problem The curse of

How to verify HA: theory and practice



Definition

A hybrid automaton is $H = (Q, X, \Sigma, Dyn, I, \Delta)$ with

- Q finite set of locations
- $X = \mathbb{R}^n$, continuous state space
- *Dyn*, dynamics on X for every $q \in Q$
- *I*, invariant, staying condition in *X*, whenever in location *q* the continuous state obeys x ∈ *I*(*q*).

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

• Δ , finite set of transitions $\delta = (p, q, a, g, r)$

Eugene Asarin

Hybrid automata: the model

An example Definition of HA Classes of HA

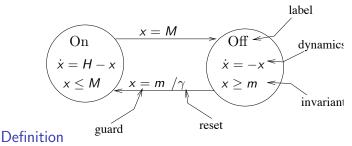
A couple of exercises

Verification c HA

The reachability problem

The curse of undecidability

How to verify HA: theory and practice



A hybrid automaton is $H = (Q, X, \Sigma, Dyn, I, \Delta)$ with

- Q finite set of locations
- $X = \mathbb{R}^n$, continuous state space
- *Dyn*, dynamics on X for every $q \in Q$
- I, invariant, staying condition in X
- Δ , finite set of transitions $\delta = (p, q, a, g, r)$
 - $p,q \in Q$, from p to q
 - *a* ∈ Σ a label
 - g a guard; $g(\mathbf{x})$ required to take δ
 - r a reset (or jump); $\mathbf{x} := r(\mathbf{x})$ when taking δ

Eugene Asarin

Hybrid automata: the model

An example

Definition of HA

A couple of exercises

Verification of HA

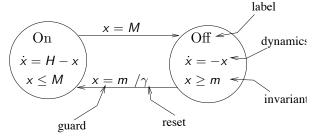
The reachability problem

The curse of undecidability

How to verify HA: theory and practice

Trajectory-based semantics

▲ロト ▲□ト ▲ヨト ▲ヨト ヨー のくで



Eugene Asarin

- An example
- Definition of HA
- A couple of

- The reachability
- How to verify

Μ

m

label x = MOff On dynamics $\dot{x} = H - x$ $\dot{x} = -x$ $x \leq M$ x = m $x \ge m$ invariant A trajectory : $\xi \operatorname{guade} T \to Q \times \mathbb{R}^{\operatorname{eset}}$ х

Trajectory-based semantics

(日) э

Eugene Asarin

Hybrid automata: the model

An example

Definition of HA

A couple of exercises

Verification o HA

The reachability problem

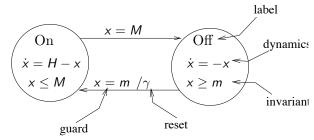
I he curse of undecidability How to verify

HA: theory and practice

Transition system semantics

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

э



- States: $S = Q \times \mathbb{R}^n$
- Transitions: $T = T_{flow} \cup T_{jump}$

Eugene Asarin

Hybrid automata: the model

An example

Definition of HA

A couple of exercises

Verification o HA

The reachability problem

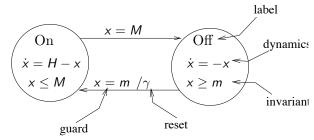
I he curse of undecidability How to verify

HA: theory and practice

Transition system semantics

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

э



- States: $S = Q \times \mathbb{R}^n$
- Transitions: $T = T_{flow} \cup T_{jump}$

Eugene Asarin

Hybrid automata: the model

An example

Definition of HA

A couple of exercises

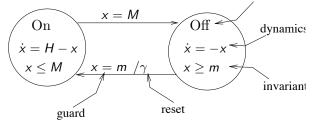
Verification o HA

The reachability problem

undecidability How to verify

practice

Transition system semantics



- States: $S = Q \times \mathbb{R}^n$
- Transitions: $T = T_{flow} \cup T_{jump}$
 - $(q, \mathbf{x}_1) \stackrel{\text{flow}}{\rightarrow} (q, \mathbf{x}_2) \Leftrightarrow$ we can go from \mathbf{x}_1 to \mathbf{x}_2 in ODE $\dot{\mathbf{x}} = f_q(\mathbf{x})$
 - $(q_1, \mathbf{x}_1) \stackrel{\mathsf{jump}}{
 ightarrow} (q_2, \mathbf{x}_2) \Leftrightarrow \mathsf{if} \mathsf{ we can jump}.$

Eugene Asarin

Hybrid automata: the model

An example

Definition of HA

A couple of exercises

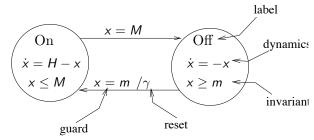
Verification o HA

The reachability problem

How to verify HA: theory and Transition system semantics

・ロト ・ 一下・ ・ ヨト ・ 日 ・

3



- States: $S = Q \times \mathbb{R}^n$
- Transitions: $T = T_{flow} \cup T_{jump}$
- Runs: sequences of states and transitions.

Eugene Asarin

Hybrid automata: the model

An example

Definition of HA

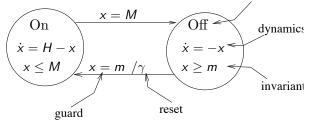
A couple of exercises

Verification of HA

The reachability problem The curse of

How to verify HA: theory and practice

Transition system semantics



Transition system (S, T) of a HA

- States: $S = Q \times \mathbb{R}^n$
- Transitions: $T = T_{flow} \cup T_{jump}$
- **Runs:** sequences of states and transitions.

 $(\mathrm{On},0) \stackrel{\mathsf{flow}}{\to} (\mathrm{On},M) \stackrel{\mathsf{jump}}{\to} (\mathrm{Off},M) \stackrel{\mathsf{flow}}{\to} (\mathrm{Off},m) \stackrel{\mathsf{jump}}{\to} (\mathrm{On},m) \cdot$

▲日▼▲□▼▲□▼▲□▼ □ のので

Eugene Asarin

Hybrid automata: the model

An example Definition of HA

Classes of HA

A couple of exercises

Verification of HA

The reachability problem The curse of undecidability How to verify HA: theory and practice

Classes of Hybrid Automata

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Why classes?

Because HA are too reach; it is impossible to establish, decide, analyze properties of all HA.

How to define a class of HA

- dimension, discrete or continuous time, eager or lazy
- what kind of dynamics
- what kind of guards/invarians/jumps

We will consider TIMED AUTOMATA

Eugene Asarin

Hybrid automata: the model

An example Definition of H

Classes of HA A couple of

exercises

Verification HA

The reachability problem

How to verify HA: theory and

Different systems

- a control system
- a scheduler with preemption
- a genetic network

The same class of models

A network of interacting Hybrid automata

How to model?

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Eugene Asarin

Hybrid automata: the model

An example Definition of HA Classes of HA

A couple of exercises

Verification of HA

The reachability problem

undecidability How to verify HA: theory and practice

Modeling exercise 1

Genetic network

We consider expression of two genes A and B, i.e. production of two proteins P and Q

- The proteins are degraded with rate k.
- P catalyzes expression of B:
 - Production of Q is proportional to the concentration of P with a coefficient *a*.
 - Concentration of P crosses a threshold s ⇒ production of Q constant = as.
- Q inhibits expression of A:
 - Production of P equals d b (concentration de Q).
 - Concentration of Q crosses a threshold $r \Rightarrow$ production of P blocks.

▲日▼▲□▼▲□▼▲□▼ □ のので

Eugene Asarin

Hybrid automata: the model

An example Definition of HA Classes of HA

A couple of exercises

Verification of HA

The reachability problem

undecidability How to verify HA: theory and practice

Scheduling

Schedule two jobs on one CPU and one printer with a total execution time up to 16 minutes.

- Job 1 : Compute (10 min); Print (5 min)
- Job 2 : Download (3 min); Compute (1 min); Print (2 min)

Try it :

- without preemption;
- 2 with preemptible computing.

Modeling exercise 2

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Eugene Asarin

Hybrid automata: the model

An example Definition of HA Classes of HA A couple of exercises

Verification of HA

The reachability problem

The curse of undecidability

How to verify HA: theory and practice

Verification and reachability problems

▲ロト ▲□ト ▲ヨト ▲ヨト ヨー のくで

• Is automatic verification possible for HA?

Eugene Asarin

Hybrid automata: the model

An example Definition of HA Classes of HA A couple of exercises

Verification of HA

The reachability problem

The curse of undecidability How to verify HA: theory and practice

Verification and reachability problems

- Is automatic verification possible for HA?
- Safety: are we sure that HA never enters a bad state?
- It can be seen as reachability : verify that

 $\neg \mathsf{Reach}(\mathit{Init}, \mathit{Bad})$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Eugene Asarin

Hybrid automata: the model

An example Definition of HA Classes of HA A couple of exercises

Verification of HA

The reachability problem

The curse of undecidability How to verify HA: theory and practice

Verification and reachability problems

- Is automatic verification possible for HA?
- Safety: are we sure that HA never enters a bad state?
- It can be seen as reachability : verify that

¬Reach(Init, Bad)

▲日▼▲□▼▲□▼▲□▼ □ のので

- It is a natural and challenging mathematical problem.
- Many works on decidability
- Some works on approximated techniques

Eugene Asarin

Hybrid automata: the model

An example Definition of HA Classes of HA A couple of exercises

Verification o HA

The reachability problem

The curse of undecidability How to verify HA: theory and practice

The reachability problem for a class C

Problem

Given

- a hybrid automaton $\mathcal{H} \in C$
- two sets $A, B \subset Q \times \mathbb{R}^n$

find out whether there exists a trajectory of \mathcal{H} starting in A and arriving to B. All parameters rational.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Eugene Asarin

Hybrid automata: the model

An example Definition of HA Classes of HA A couple of exercises

Verification o HA

The reachability problem

The curse of undecidability

How to verify HA: theory and practice

Exact methods: The curse of undecidability

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Bad news

- Koiran et al.: Reach is undecidable for 2d PAM.
- AM95: Reach is undecidable for 3d PCD.
- HPKV95 Many results of the type : "3clocks + 2 stopwatches = undecidable"

Eugene Asarin

Hybrid automata: the model

An example Definition of HA Classes of HA A couple of exercises

Verification o HA

The reachability problem

The curse of undecidability

How to verify HA: theory and practice

Exact methods: The curse of undecidability

Bad news

- Koiran et al.: Reach is undecidable for 2d PAM.
- AM95: Reach is undecidable for 3d PCD.
- HPKV95 Many results of the type : "3clocks + 2 stopwatches = undecidable"

They are really bad

- Reachability is undecidable for very simple HA.
- Thus, other verification problems are also undecidable.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Eugene Asarin

Hybrid automata: the model

An example Definition of HA Classes of HA A couple of exercises

Verification o HA

The reachability problem

The curse of undecidability

How to verify HA: theory and practice

Undecidability Proofs — Preliminaries

▲ロト ▲□ト ▲ヨト ▲ヨト ヨー のくで

Proof method: simulation of Minsky Machine, Turing Machine etc.

Eugene Asarin

Hybrid automata: the model

An example Definition of HA Classes of HA A couple of exercises

Verification of HA

The reachability problem

The curse of undecidability

How to verify HA: theory and practice

Undecidability Proofs — Preliminaries

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Proof method:

simulation of Minsky Machine, Turing Machine etc.

Details: proof schema

- Reachability undecidable for Minsky Machines (well-known).
- A class of HA can simulate MM (to prove).
- Reach for MM \leq Reach for HA.
- Conclude that Reach for HA is undecidable.

Eugene Asarin

Hybrid automata: the model

An example Definition of HA Classes of HA A couple of exercises

Verification HA

The reachability problem

The curse of undecidability

How to verify HA: theory and practice

Definition

- A counter: values in N; operations: C + +, C − -; test C > 0?
- A Minsky machine has 2 counters
- Its program has finitely many lines like that:
 - $q_1: D++;$ goto q_2
 - q_2 : C -; goto q_3
 - q_3 : if C > 0 then goto q_2 else q_1

Minsky Machines

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Eugene Asarin

Hybrid automata: the model

An example Definition of HA Classes of HA A couple of exercises

Verification HA

The reachability problem

The curse of undecidability

How to verify HA: theory and practice

Definition

A counter: values in N; operations: C + +, C − -; test C > 0?

Minsky Machines

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- A Minsky machine has 2 counters
- Its program has finitely many lines like that:
 - $q_1: D++;$ goto q_2
 - q_2 : C -; goto q_3
 - q_3 : if C > 0 then goto q_2 else q_1

Theorem (Minsky)

Reachability is undecidable for Minsky machines.

Eugene Asarin

Hybrid automata: the model

An example Definition of HA Classes of HA A couple of exercises

Verification HA

The reachability problem

The curse of undecidability

How to verify HA: theory and practice

Definition

- A counter: values in N; operations: C + +, C − -; test C > 0?
- A Minsky machine has 2 counters
- Its program has finitely many lines like that:
 - $q_1: D++;$ goto q_2
 - q_2 : C -; goto q_3
 - q_3 : if C > 0 then goto q_2 else q_1

(All variants: (p,0,0)->(q,0,0); (p,0,0)->(q,*,*); Theorem (Minsky) or (p,n,0)-> (q,*,*) even for a fixed machine, etc Reachability is undecidable for Minsky machines.

Fact

Any algorithm can be programmed on a Minsky machine. But they are slooooooow.

Minsky Machines

Eugene Asarin

Hybrid automata: the model

An example Definition of HA Classes of HA A couple of exercises

Verification o HA

The reachability problem

The curse of undecidability

How to verify HA: theory and practice

A typical undecidability theorem

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Theorem (Koiran, Cosnard, Garzon) Reach *is undecidable for 2d PAM*.

Eugene Asarin

Hybrid automata: the model

An example Definition of HA Classes of HA A couple of exercises

Verification of HA

The reachability problem

The curse of undecidability

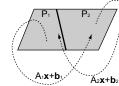
How to verify HA: theory and practice

A typical undecidability theorem

Theorem (Koiran, Cosnard, Garzon) Reach *is undecidable for 2d PAM.*

Reminder

A 2 dimensional PAM:



 $\mathbf{x} := A_i \mathbf{x} + \mathbf{b}_i$ for $\mathbf{x} \in P_i$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

-

Eugene Asarin

Hybrid automata: th model

An example Definition of HA Classes of HA A couple of exercises

Verification HA

The reachability problem

The curse of undecidability

How to verify HA: theory and practice

Simulating a counter by a PAM

イロト 不得 とくほと イヨト

= 900

Counter	PAM
State space \mathbb{N}	State space [0; 1]
State $C = n$	$x = 2^{-n}$
C + +	x := x/2
C	x := 2x
<i>C</i> > 0?	x < 0.75?

Eugene Asarin

Hybrid automata: the model

An example Definition of H/ Classes of HA A couple of exercises

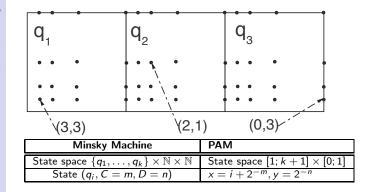
Verification o HA

The reachability problem

The curse of undecidability

How to verify HA: theory an practice

Encoding a state of a Minsky Machine



Eugene Asarin

Hybrid automata: th model

An example Definition of HA Classes of HA A couple of exercises

Verification of HA

The reachability problem

The curse of undecidability

How to verify HA: theory and practice

Simulating a Minsky Machine

Minsky Machine	PAM
State space $\{q_1, \ldots, q_k\} imes \mathbb{N} imes \mathbb{N}$	State space $[1; k+1] imes [0; 1]$
State $(q_i, C = m, D = n)$	$x = i + 2^{-m}, y = 2^{-n}$
$q_1: D++; ext{ goto } q_2$	$\begin{cases} x := x + 1 \\ y := y/2 \end{cases} \text{if } 1 < x \le 2$
q_2 : C — –; goto q_3	$\begin{cases} x := 2(x-2) + 3 \\ y := y \end{cases} \text{ if } 2 < x \le 3$
q_3 : if $C > 0$ then goto q_2 else q_1	$\begin{cases} x := x - 1 \\ y := y \end{cases} \text{if } 3 < x < 4$
	$\begin{cases} x := x - 2\\ y := y \end{cases} \text{if } x = 4$

MM: (q_i,0,0)...->(q_j,*,*)

ssi PAM: (i+1,1) ...->le carré j<x<=j+1

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Eugene Asarin

Hybrid automata: the model

An example Definition of HA Classes of HA A couple of exercises

Verification of HA

The reachability problem

The curse of undecidability

How to verify HA: theory and practice

... finally we have proved:

(日)

Theorem (Koiran et al.)

Reach is undecidable for 2d PAMs.

Eugene Asarin

Hybrid automata: the model

An example Definition of HA Classes of HA A couple of exercises

Verification of HA

The reachability problem

The curse of undecidability

How to verify HA: theory and practice

We have learned today

- What is a Hybrid Automaton.
- How to read yet another definition of HA and its semantics.

Conclusions of Day 1

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- How to model things using HA.
- Famous classes of HA.
- Safety verification as reachability problem.
- How to prove undecidability by simulation of Minsky Machines.
- Even the simplest classes of HA have undecidable reachability.

Eugene Asarin

Hybrid automata: the model

An example Definition of HA Classes of HA A couple of exercises

Verification of HA

The reachability problem

The curse of undecidability

How to verify HA: theory and practice

verification Abstract algorithm - important

A generic verification algorithm A Forward breadth-first search

F=Init

repeat

```
\begin{array}{l} \mathsf{F}{=}\mathsf{F} \cup \mathsf{SuccFlow}(\mathsf{F}) \cup \mathsf{SuccJump}(\mathsf{F})\\ \textbf{until} \quad (\mathsf{F}{\cap} \; \mathsf{Bad} \neq \emptyset) | \; \mathsf{fixpoint} \; | \; \mathsf{tired}\\ \textbf{say} \; "\mathsf{reachable"} \; | \; " \; \mathsf{unreachable"} \; | \; " \; \mathsf{timeout"} \end{array}
```

Most verification methods and tools are variants of it.

Eugene Asarin

Hybrid automata: the model

An example Definition of HA Classes of HA A couple of exercises

Verification of HA

The reachability problem

The curse of undecidability

How to verify HA: theory and practice

Abstract algorithm - important

A generic verification *semi*-algorithm A Forward breadth-first search

F=Init

repeat

```
\begin{array}{l} \mathsf{F}{=}\mathsf{F} \cup \mathsf{SuccFlow}(\mathsf{F}) \cup \mathsf{SuccJump}(\mathsf{F}) \\ \textbf{until} \quad (\mathsf{F}{\cap} \; \mathsf{Bad} \neq \emptyset) | \; \mathsf{fixpoint} \; | \; \mathsf{tired} \\ \textbf{say} \; "\mathsf{reachable"} \; | \; " \; \mathsf{unreachable"} \; | \; " \; \mathsf{timeout"} \end{array}
```

Most verification methods and tools are variants of it.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Eugene Asarin

Hybrid automata: the model

An example Definition of HA Classes of HA A couple of exercises

Verification of HA

The reachability problem

The curse of undecidability

How to verify HA: theory and practice

Abstract algorithm - important

A generic verification semi-algorithm A Forward breadth-first search

F=Init

repeat

```
\begin{array}{l} \mathsf{F}{=}\mathsf{F} \cup \mathsf{SuccFlow}(\mathsf{F}) \cup \mathsf{SuccJump}(\mathsf{F})\\ \textbf{until} \quad (\mathsf{F}{\cap} \; \mathsf{Bad} \neq \emptyset) | \; \mathsf{fixpoint} \; | \; \mathsf{tired}\\ \textbf{say} \; "\mathsf{reachable"} \; | \; " \; \mathsf{unreachable"} \; | \; " \; \mathsf{timeout"} \end{array}
```

There are variants:

- forward/backward
- breadth first/depth first/best first/etc.

Most verification methods and tools are variants of it.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Eugene Asarin

Hybrid automata: the model

An example Definition of HA Classes of HA A couple of exercises

Verification o HA

The reachability problem

The curse of undecidability

How to verify HA: theory and practice

How to implement it

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Needed data structure for representation of subsets of \mathbb{R}^n , and algorithms for efficient computing of

- unions, intersections;
- inclusion tests;
- SuccFlow;
- SuccJump.

Eugene Asarin

Hybrid automata: the model

An example Definition of HA Classes of HA A couple of exercises

Verification o HA

The reachability problem

The curse of undecidability

How to verify HA: theory and practice

How to implement it

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Needed data structure for representation of subsets of \mathbb{R}^n , and algorithms for efficient computing of

- unions, intersections;
- inclusion tests;
- SuccFlow;
- SuccJump.

It could be exact or over-approximate.

Eugene Asarin

Hybrid automata: the model

An example Definition of HA Classes of HA A couple of exercises

Verification o HA

The reachability problem

The curse of undecidability

How to verify HA: theory and practice

Theorem

If for a class of HA the Algorithm A can be implemented (exactly), then

Some trivial results

- Reach is semi-decidable;
- bounded Reach in *p* steps is decidable;
- a verification tool can be built.

Eugene Asarin

Hybrid automata: the model

An example Definition of HA Classes of HA A couple of exercises

Verification o HA

The reachability problem

The curse of undecidability

How to verify HA: theory and practice

Theorem

If for a class of HA the Algorithm A can be implemented (exactly), then

- Reach *is semi-decidable;*
- bounded Reach in n steps is decidable;
- a verification tool can be built.

Fact

Suppose for a class of HA the Algorithm A can be implemented approximately. Then we can build a verification tool saying: • "Unreachable".

- "Maybe reachable".
- " Timeout".

Some trivial results

Eugene Asarin

TA: an interesting subclass of HA

Decidability

Automata and language theory

Verification of TA in practice

Part II

Timed Automata

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Eugene Asarin

TA: an interesting subclass of HA

Decidability

Automata and language theory

Verification of TA in practice

4 Decidability

5 Automata and language theory

3 TA: an interesting subclass of HA

Outline

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Eugene Asarin

TA: an interesting subclass of HA

Decidability

Automata and language theory

Verification of TA in practice

3 TA: an interesting subclass of HA

4 Decidability

5 Automata and language theory

6 Verification of TA in practice

Outline

Eugene Asarin

TA: an interesting subclass of HA

Decidability

Automata and language theory

Verification of TA in practice

Definition of TA

Definition

Timed automata are a subclass of hybrid automata:

Variables x_1, \ldots, x_n , called clocks.

Dynamics $\dot{x}_i = 1$, for all clocks, in all locations.

Guards and invariants Conjunctions of $x_i < c$ (or $\leq, =, . \geq$))with $c \in \mathbb{N}$

Resets $x_i := 0$ for some clocks.

×

x= temps écoulé après le dernier reset

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Eugene Asarin

TA: an interesting subclass of HA

Decidability

Automata and language theory

Verification of TA in practice

An example of a timed automaton • Timed automaton (we forget to write $\dot{x} = 1$): $a, x \in [1; 2]$? $a, x \in [1; 2]$? b, x := 0

Eugene Asarin

TA: an interesting subclass of HA

Decidability

- Automata and language theory
- Verification of TA in practice

An example of a timed automaton • Timed automaton (we forget to write $\dot{x} = 1$): $a, x \in [1; 2]$? $a, x \in [1; 2]$? b, x := 0

Its run

 $(q_1,0) \stackrel{1.83}{
ightarrow} (q_1,1.83) \stackrel{a}{
ightarrow} (q_2,1.83) \stackrel{4.1}{
ightarrow} (q_2,5.93) \stackrel{b}{
ightarrow} (q_1,0) \stackrel{1}{
ightarrow} (q_1,1) \stackrel{a}{
ightarrow}$

・ロッ ・雪 ・ ・ ヨ ・ ・ ヨ ・

-

Eugene Asarin

TA: an interesting subclass of HA

- Decidability
- Automata and language theory
- Verification of TA in practice

An example of a timed automaton • Timed automaton (we forget to write $\dot{x} = 1$): $a, x \in [1; 2]$? $a, x \in [1; 2]$? b, x := 0

Its run

 $(q_1,0) \stackrel{1.83}{
ightarrow} (q_1,1.83) \stackrel{a}{
ightarrow} (q_2,1.83) \stackrel{4.1}{
ightarrow} (q_2,5.93) \stackrel{b}{
ightarrow} (q_1,0) \stackrel{1}{
ightarrow} (q_1,1) \stackrel{a}{
ightarrow}$

• Its trace 1.83 a 4.1 b 1 a a timed word

Eugene Asarin

TA: an interesting subclass of HA

Decidability

- Automata and language theory
- Verification of TA in practice

An example of a timed automaton • Timed automaton (we forget to write $\dot{x} = 1$): $a, x \in [1; 2]$? (q_1) (q_2) b, x := 0

• Its run

 $(q_1,0) \stackrel{1.83}{
ightarrow} (q_1,1.83) \stackrel{a}{
ightarrow} (q_2,1.83) \stackrel{4.1}{
ightarrow} (q_2,5.93) \stackrel{b}{
ightarrow} (q_1,0) \stackrel{1}{
ightarrow} (q_1,1)$

- Its trace 1.83 a 4.1 b 1 a a timed word
- Its *timed language*: set of all the traces starting in *q*₁, ending in *q*₂:

$$\{t_1 \ a \ s_1 \ b \ t_2 \ a \ s_2 \ b \dots \ t_n \ a \ | \ \forall i.t_i \in [1;2]\}$$

▲日▼▲□▼▲□▼▲□▼ □ のので

Eugene Asarin

TA: an interesting subclass of HA

Decidability

- Automata and language theory
- Verification of TA in practice

An example of a timed automaton • Timed automaton (we forget to write $\dot{x} = 1$): $a, x \in [1; 2]$? $a, x \in [1; 2]$? b, x := 0

Its run

 $(q_1,0) \stackrel{1.83}{
ightarrow} (q_1,1.83) \stackrel{a}{
ightarrow} (q_2,1.83) \stackrel{4.1}{
ightarrow} (q_2,5.93) \stackrel{b}{
ightarrow} (q_1,0) \stackrel{1}{
ightarrow} (q_1,1) \stackrel{a}{
ightarrow}$

- Its trace 1.83 a 4.1 b 1 a a timed word
- Its *timed language*: set of all the traces starting in *q*₁, ending in *q*₂:

$$\{t_1 \, a \, s_1 \, b \, t_2 \, a \, s_2 \, b \dots t_n \, a \mid \forall i.t_i \in [1;2]\}$$

Observation

Clock value of x: time since the last reset of x. $x \to x \to y \to y$

Eugene Asarin

TA: an interesting subclass of HA

Decidability

Automata and language theory

Verification of TA in practice

Some simple exercises

▲ロト ▲□ト ▲ヨト ▲ヨト ヨー のくで

Draw timed automata for specifications:

• Request *a* arrives every 5 minutes.

Eugene Asarin

TA: an interesting subclass of HA

Decidability

Automata and language theory

Verification of TA in practice

Some simple exercises

▲ロ▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ ヨー のなべ

- Request *a* arrives every 5 minutes.
- Request *a* arrives every 5 to 7 minutes.

Eugene Asarin

TA: an interesting subclass of HA

Decidability

Automata and language theory

Verification of TA in practice

Some simple exercises

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Request *a* arrives every 5 minutes.
- Request a arrives every 5 to 7 minutes.
- *a* arrives every 5 to 7 minutes; and *b* arrives every 3 to 10 minutes.

Eugene Asarin

TA: an interesting subclass of HA

Decidability

Automata and language theory

Verification of TA in practice

Some simple exercises

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Request *a* arrives every 5 minutes.
- Request *a* arrives every 5 to 7 minutes.
- *a* arrives every 5 to 7 minutes; and *b* arrives every 3 to 10 minutes.
- Request *a* is serviced within 2 minutes by *c* or rejected within 1 minute by *r*.

Eugene Asarin

TA: an interesting subclass of HA

Decidability

Automata and language theory

Verification of TA in practice

Some simple exercises

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Request *a* arrives every 5 minutes.
- Request *a* arrives every 5 to 7 minutes.
- *a* arrives every 5 to 7 minutes; and *b* arrives every 3 to 10 minutes.
- Request *a* is serviced within 2 minutes by *c* or rejected within 1 minute by *r*.
- The same, but a arrives every 5 to 7 minutes.

Eugene Asarin

Meditation on TA

▲ロト ▲□ト ▲ヨト ▲ヨト ヨー のくで

TA: an interesting subclass of HA

Decidability

Automata and language theory

Verification of TA in practice

Compared to HA

Very restricted: only time progress remains from all physics.

Eugene Asarin

TA: an interesting subclass of HA

Decidability

Automata an language theory

Verification of TA in practice

Meditation on TA

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Compared to HA

Very restricted: only time progress remains from all physics.

Compared to finite automata

Time and events together. Interesting

Eugene Asarin

TA: an interesting subclass of HA

Decidability

Automata an language theory

Verification of TA in practice

Meditation on TA

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Compared to HA

Very restricted: only time progress remains from all physics.

Compared to finite automata

Time and events together. Interesting

As modeling formalism

For timed protocols, scheduling, timed aspects of embedded/real-time software (non-functional). See scheduling exercise.

Eugene Asarin

TA: an interesting subclass of HA

Decidability

Automata an language theory

Verification of TA in practice

Meditation on TA

Compared to HA

Very restricted: only time progress remains from all physics.

Compared to finite automata

Time and events together. Interesting

As modeling formalism

For timed protocols, scheduling, timed aspects of embedded/real-time software (non-functional). See scheduling exercise.

As specification formalism

For timed non-functional specifications. See exercises just above.

Eugene Asarin

TA: an interesting subclass of HA

Decidability

Automata an language theory

Verification of TA in practice

Meditation on TA

Compared to HA

Very restricted: only time progress remains from all physics.

Compared to finite automata

Time and events together. Interesting

As modeling formalism

For timed protocols, scheduling, timed aspects of embedded/real-time software (non-functional). See scheduling exercise.

As specification formalism

For timed non-functional specifications. See exercises just above.

Eugene Asarin

TA: an interesting subclass of HA

Decidability

Automata and language theory

Verification of TA in practice

3 TA: an interesting subclass of HA

4 Decidability

5 Automata and language theory

6 Verification of TA in practice

Outline

・ロッ ・雪 ・ ・ ヨ ・ ・ ヨ ・

э.

Eugene Asarin

Main theorem

▲ロト ▲□ト ▲ヨト ▲ヨト ヨー のくで

TA: an interesting subclass of HA

Decidability

Automata and language theory

Verification of TA in practice

Theorem (Alur, Dill)

Reachability is decidable for timed automata.

Eugene Asarin

TA: an interesting subclass of HA

Decidability

Automata and language theory

Verification of TA in practice Unimed language of a timed automaton is regular (and can be computed). Reachability is decidable for timed automata.

Classical formulation

Empty language problem is decidable for TA

Main theorem

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Hybrid and Timed Systems

Eugene Asarin

TA: an interesting subclass of HA

Decidability

Automata and language theory

Verification of TA in practice

• Split the state space $Q \times \mathbb{R}^n$ into regions s.t.

- all the states in one region have the same behavior;
- there are finitely many regions;

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Hybrid and Timed Systems

Eugene Asarin

TA: an interesting subclass of HA

Decidability

Automata and language theory

Verification of TA in practice

- Split the state space $Q \times \mathbb{R}^n$ into regions s.t.
 - all the states in one region have the same behavior;
 - there are finitely many regions;
- Build a region automaton (its states are regions)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Hybrid and Timed Systems

Eugene Asarin

TA: an interesting subclass of HA

Decidability

Automata and language theory

Verification of TA in practice

- Split the state space $Q \times \mathbb{R}^n$ into regions s.t.
 - all the states in one region have the same behavior;
 - there are finitely many regions;
- Build a finite region automaton (its states are regions)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Hybrid and Timed Systems

Eugene Asarin

TA: an interesting subclass of HA

Decidability

Automata and language theory

Verification of TA in practice

- Split the state space $Q \times \mathbb{R}^n$ into regions s.t.
 - all the states in one region have the same behavior;
 - there are finitely many regions;
- Build a finite region automaton (its states are regions)
- Test reachability in this region automaton.

use it to recognize the untimed language

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Hybrid and Timed Systems

Eugene Asarin

TA: an interesting subclass of HA

Decidability

Automata and language theory

Verification of TA in practice

- Split the state space $Q \times \mathbb{R}^n$ into regions s.t.
 - all the states in one region have the same behavior;
 - there are finitely many regions;
- Build a finite region automaton (its states are regions)
- Test reachability in this region automaton.

use it to recognize the untimed language Two difficulties

- What does it mean: the same behavior?
- How to invent it?

Hybrid and Timed Systems

Eugene Asarin

TA: an interesting subclass of HA

Decidability

Automata and language theory

Verification of TA in practice

- Split the state space $Q \times \mathbb{R}^n$ into regions s.t.
 - all the states in one region have the same behavior;
 - there are finitely many regions;
- Build a finite region automaton (its states are regions)
- Test reachability in this region automaton.

use it to recognize the untimed language Two difficulties

- What does it mean: the same behavior? Bisimulation.
- How to invent it? A&D invented it using ideas of Berthomieu (Time Petri nets). In fact it is rather natural.

Eugene Asarin

TA: an interesting subclass of HA

Decidability

Automata and language theory

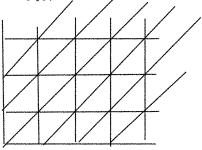
Verification of TA in practice

Definition

Two states of a TA are region equivalent: $(q, \mathbf{x}) \approx (p, \mathbf{y})$ if

- Same location: *p* = *q*
- Same integer parts of clocks: $\forall i (\lfloor x_i \rfloor = \lfloor y_i \rfloor)$
- Same order of fractional parts of clocks
 - $\forall i, j(\{x_i\} < \{x_j\} \Leftrightarrow \{y_i\} < \{y_j\})$

Look at the picture!



Region equivalence

<=> x and y satisfy the same constraints of forms x_3<5 and x_1-x_2<2

Eugene Asarin

TA: an interesting subclass of HA

Decidability

Automata and language theory

Verification of TA in practice

Definition

Two states of a TA are region equivalent: $(q, \mathbf{x}) \approx (p, \mathbf{y})$ if

- Same location: *p* = *q*
- Same integer parts of clocks: $\forall i (\lfloor x_i \rfloor = \lfloor y_i \rfloor)$
- Same order of fractional parts of clocks
 - $\forall i, j(\{x_i\} < \{x_j\} \Leftrightarrow \{y_i\} < \{y_j\})$

Look at the picture!

An issue

• Infinitely many equivalence classes.

Region equivalence

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Eugene Asarin

TA: an interesting subclass of HA

Decidability

Automata and language theory

Verification of TA in practice

Definition

Two states of a TA are region equivalent: $(q, \mathbf{x}) \approx (p, \mathbf{y})$ if

- Same location: *p* = *q*
- Same integer parts of small clocks: \forall small $i(\lfloor x_i \rfloor = \lfloor y_i \rfloor)$

Region equivalence

- Same order of fractional parts small of clocks
 ∀smalli, j ({x_i} < {x_j} ⇔ {y_i} < {y_j})
- Or they are both big : $\forall i ((x_i > M) \Leftrightarrow (y_i > M))$

Look at the picture!

An issue, and a solution

finitely many equivalence classes.

• Solution: when a variable is BIG, we don't care about it.

Eugene Asarin

TA: an interesting subclass of HA

Decidability

Automata and language theory

Verification of TA in practice

Definition

Two states of a TA are region equivalent: $(q, \mathbf{x}) \approx (p, \mathbf{y})$ if

- Same location: p = q
- Same integer parts of small clocks: \forall small $i(\lfloor x_i \rfloor = \lfloor y_i \rfloor)$

Region equivalence

- Same order of fractional parts small of clocks
 ∀smalli, j ({x_i} < {x_j} ⇔ {y_i} < {y_j})
- Or they are both big : $\forall i ((x_i > M) \Leftrightarrow (y_i > M))$

Look at the picture!

An issue

finitely many equivalence classes.

• Solution: when a variable is BIG, we don't care about it.

Definition

Equivalence classes of \approx are called regions.

Eugene Asarin

TA: an interesting subclass of HA

Decidability

Region equivalence is a bisimulation

▲ロ▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ ヨー のなべ

very informal

Equivalent states can make the same transitions, and arrive to equivalent states.

Verification of TA in practice

Eugene Asarin

TA: an interesting subclass of HA

Decidability

Automata and language theory

Verification of TA in practice

Region equivalence is a bisimulation

very informal

Equivalent states can make the same transitions, and arrive to equivalent states.

Let us formalize it:

Lemma time-abstract bisimulation Suppose $(q, \mathbf{x}) \approx (p, \mathbf{y})$. Then Jump If $(q, \mathbf{x}) \stackrel{a}{\rightarrow} (q', \mathbf{x}')$ then $(p, \mathbf{y}) \stackrel{a}{\rightarrow} (p', \mathbf{y}')$ with $(q', \mathbf{x}') \approx (p', \mathbf{y}')$. Time If $(q, \mathbf{x}) \stackrel{t}{\rightarrow} (q', \mathbf{x}')$ then $(p, \mathbf{y}) \stackrel{\hat{t}}{\rightarrow} (p', \mathbf{y}')$ with $(q', \mathbf{x}') \approx (p', \mathbf{y}')$ (the time can be different!).

Eugene Asarin

TA: an interesting subclass of HA

Decidability

Automata and language theory

Verification of TA in practice

Reading a timed word

Iterating the previous lemma we get

Lemma

Suppose $(q, \mathbf{x}) \approx (p, \mathbf{y})$, and $q \stackrel{w}{\rightarrow} (q', \mathbf{x}')$ (with some timed word w), then $(p, \mathbf{y}) \stackrel{\hat{w}}{\rightarrow} (p', \mathbf{y}')$ with $(q', \mathbf{x}') \approx (p', \mathbf{y}')$ (the timing in \hat{w} can be different from w).

The untiming is the same

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Eugene Asarin

TA: an interesting subclass of HA

Decidability

Automata and language theory

Verification of TA in practice

Reading a timed word

Iterating the previous lemma we get

Lemma

Suppose $(q, \mathbf{x}) \approx (p, \mathbf{y})$, and $q \stackrel{w}{\rightarrow} (q', \mathbf{x}')$ (with some timed word w), then $(p, \mathbf{y}) \stackrel{\hat{w}}{\rightarrow} (p', \mathbf{y}')$ with $(q', \mathbf{x}') \approx (p', \mathbf{y}')$ (the timing in \hat{w} can be different from w).

Corollary

The untiming is the same

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

The same set of regions is reachable from elements of one region. (using the same untiming)

Eugene Asarin

TA: an interesting subclass of HA

Decidability

- Automata and language theory
- Verification of TA in practice

Untiming Decision algorithm

- Build a region automaton RA
 - States are regions.
 - There is a transition $r_1 \xrightarrow{a} r_2$ if some (all) element of r_1 can go to some element of r_2 on a.
 - There is a transition $r_1 \xrightarrow{\tau} r_2$ if some (all) element of r_1 can go to some element of r_2 on some t > 0

▲日▼▲□▼▲□▼▲□▼ □ ののの

 $(\tau \text{ should be } \epsilon)$

Eugene Asarin

TA: an interesting subclass of HA

Decidability

- Automata and language theory
- Verification of TA in practice

Untiming Decision algorithm

- Build a region automaton RA
 - States are regions.
 - There is a transition $r_1 \xrightarrow{a} r_2$ if some (all) element of r_1 can go to some element of r_2 on a.
 - There is a transition $r_1 \xrightarrow{\tau} r_2$ if some (all) element of r_1 can go to some element of r_2 on some t > 0
- Check whether some final region in RA is reachable from initial region.

RA recognizes the untiming of the initial language

initial states of RA: regions of (i,0) for initial i of TA final states of RA: regions of (f,x) for final f of TA, and any x

Eugene Asarin

TA: an interesting subclass of HA

Decidability

Automata and language theory

Verification of TA in practice

5 Automata and language theory

3 TA: an interesting subclass of HA

6 Verification of TA in practice

Outline

・ロト・「聞・ 《聞・ 《聞・ 《日・

Eugene Asarin

Closure property

▲ロト ▲□ト ▲ヨト ▲ヨト ヨー のくで

TA: an interesting subclass of HA

Decidability

Automata and language theory

Verification of TA in practice

Definition

Timed regular language is a language accepted by a TA

Eugene Asarin

Lugene / Isan

TA: an interesting subclass of HA

Decidability

Automata and language theory

Verification of TA in practice

Definition

Timed regular language is a language accepted by a TA

Theorem

Timed regular languages are closed under \cap, \cup , projection, but not complementation.

Closure property

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Eugene Asarin

TA: an interesting subclass of H/

Decidability

Automata and language theory

Verification of TA in practice

Closure property

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Definition

Timed regular language is a language accepted by a TA

Theorem

Timed regular languages are closed under \cap, \cup , projection, but not complementation.

Fact

Determinization impossible for timed automata.

Eugene Asarin

TA: an interesting subclass of HA

Decidability

Automata and language theory

Verification of TA in practice

Decidability properties

▲ロト ▲□ト ▲ヨト ▲ヨト ヨー のくで

Definition

Timed regular language (TRL) is a language accepted by a TA

Eugene Asarin

TA: an interesting subclass of HA

Decidability

Automata and language theory

Verification of TA in practice

Decidability properties

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Definition

Timed regular language (TRL) is a language accepted by a TA

Theorem

Decidable for TRL (represented by TA): $L = \emptyset$, $w \in L$, $L \cap M = \emptyset$.

Eugene Asarin

TA: an interesting subclass of HA

Decidability

Automata and language theory

Verification of TA in practice

Decidability properties

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Definition

Timed regular language (TRL) is a language accepted by a TA

Theorem

Decidable for TRL (represented by TA): $L = \emptyset$, $w \in L$, $L \cap M = \emptyset$.

Proof.

Immediate from Alur&Dill's theorem.

Eugene Asarin

TA: an interesting subclass of HA

Decidability

Automata and language theory

Verification of TA in practice

Decidability properties

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Definition

Timed regular language (TRL) is a language accepted by a TA

Theorem

Decidable for TRL (represented by TA): $L = \emptyset$, $w \in L$, $L \cap M = \emptyset$.

Theorem

Undecidable for TRL (represented by TA): L universal (contains all the timed words), $L \subset M$, L = M.

Eugene Asarin

TA: an interesting subclass of HA

Decidability

Automata and language theory

Verification of TA in practice

Decidability properties

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Definition

Timed regular language (TRL) is a language accepted by a TA

Theorem

Decidable for TRL (represented by TA): $L = \emptyset$, $w \in L$, $L \cap M = \emptyset$.

Theorem

Undecidable for TRL (represented by TA): L universal (contains all the timed words), $L \subset M$, L = M.

Proof.

Encoding of runs of Minsky Machine as a timed languages.

Eugene Asarin

TA: an interesting subclass of HA

Decidability

Automata and language theory

Verification of TA in practice

Reminder: regular expressions

Definition

Regular expressions: $E ::= 0 | \varepsilon | a | E + E | E \cdot E | E^*$

Theorem (Kleene)

Finite automata and regular expression define the same class of languages.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Eugene Asarin

TA: an interesting subclass of HA

Decidability

Automata and language theory

Verification of TA in practice

Reminder: regular expressions

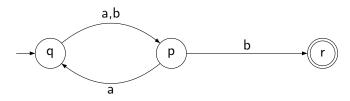
Definition

Regular expressions: $E ::= 0 | \varepsilon | a | E + E | E \cdot E | E^*$

Theorem (Kleene)

Finite automata and regular expression define the same class of languages.

Example



 $((a+b)a)^*(a+b)b$

・ロッ ・雪 ・ ・ ヨ ・ ・ ヨ ・

3

Eugene Asarin

TA: an interesting subclass of HA

Decidability

Automata and language theory

Verification of TA in practice

Timed regular expressions

▲ロト ▲□ト ▲ヨト ▲ヨト ヨー のくで

A natural question

How to define regular expressions for timed languages?

Eugene Asarin

TA: an interesting subclass of HA

Decidability

Automata and language theory

Verification of TA in practice

Timed regular expressions

▲ロ▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ ヨー のなべ

A natural question

How to define regular expressions for timed languages?

$$E ::= 0 | \varepsilon | \underline{\mathbf{t}} | a | E + E | E \cdot E | E^* | \langle E \rangle_I | E \wedge E | [a \mapsto z]E$$

Eugene Asarin

TA: an interesting subclass of HA

Decidability

Automata and language theory

Verification of TA in practice

Timed regular expressions

A natural question

How to define regular expressions for timed languages?

$$E ::= 0 | \varepsilon | \underline{\mathbf{t}} | a | E + E | E \cdot E | E^* | \langle E \rangle_I | E \wedge E | [a \mapsto z] E$$

Semantics:

$$\begin{aligned} \|\underline{\mathbf{t}}\| &= \mathbb{R}_{\geq 0} \quad \|a\| = \{a\} & \|0\| = \emptyset \quad \|\varepsilon\| = \{\varepsilon\} \\ \|E_1 \cdot E_2\| &= \|E_1\| \cdot \|E_2\| & \|E_1 + E_2\| = \|E_1\| \cup \|E_2\| \\ \|\langle E\rangle\|_I &= \{\sigma \in \|E\| \mid \ell(\sigma) \in I\} & \|E^*\| = \|E\|^* \\ \|E_1 \wedge E_2\| &= \|E_1\| \cap \|E_2\| & \|[a \mapsto z]E\| = [a \mapsto z]\|E\| \end{aligned}$$

▲ロト ▲□ト ▲ヨト ▲ヨト ヨー のくで

Eugene Asarin

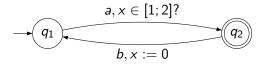
TA: an interesting subclass of HA

Decidability

Automata and language theory

Verification of TA in practice

A good example and a theorem



$$\{L = \{t_1 \ a \ s_1 \ b \ t_2 \ a \ s_2 \ b \dots t_n \ a \ | \ \forall i.t_i \in [1;2]\}$$

Eugene Asarin

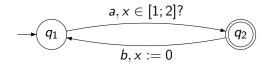
TA: an interesting subclass of HA

Decidability

Automata and language theory

Verification of TA in practice

A good example and a theorem



 $\{L = \{t_1 \ a \ s_1 \ b \ t_2 \ a \ s_2 \ b \dots t_n \ a \ | \ \forall i.t_i \in [1;2]\}$ An expression for L : $(\langle \underline{\mathbf{t}} a \rangle_{[1;2]} \underline{\mathbf{t}} b)^*$ Theorem (A., Caspi, Maler)

Timed Automata and Timed regular expressions (with \land and $[a \mapsto z]$) define the same class of timed languages

A nasty example

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Eugene Asarin

TA: an interesting subclass of HA

Decidability

Automata and language theory

Verification of TA in practice

Intersection needed [ACM]

$$\{t_1 a t_2 b t_3 c \mid t_1 + t_2 = 1, t_2 + t_3 = 1\} = \underline{\mathbf{t}} a \langle \underline{\mathbf{t}} b \underline{\mathbf{t}} c \rangle_1 \wedge \langle \underline{\mathbf{t}} a \underline{\mathbf{t}} b \rangle_1 \underline{\mathbf{t}} c$$

Eugene Asarin

TA: an interesting subclass of HA

Decidability

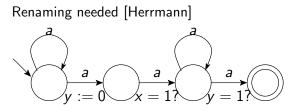
Automata and language theory

Verification of TA in practice

Another nasty example

< 日 > < 同 > < 回 > < 回 > < 回 > <

э



 $[b \mapsto a]((\underline{\mathbf{t}}a)^* \langle \underline{\mathbf{t}}b(\underline{\mathbf{t}}a)^* \rangle_1 \wedge \langle (\underline{\mathbf{t}}a)^* \underline{\mathbf{t}}b \rangle_1 (\underline{\mathbf{t}}a)^*).$

Eugene Asarin

TA: an interesting subclass of HA

Decidability

Automata and language theory

Verification of TA in practice

5 Automata and language theory

4 Decidability

Outline

Eugene Asarin

TA: an interesting subclass of HA

Decidability

Automata and language theory

Verification of TA in practice

Model-checking etc.

Reminder: decidability for TA PSPACE-complete

- We can decide: Reach, $L \neq \emptyset$, $L \cap M = \emptyset$, $w \in L$
- Undecidable: L = all the words; $L \subset M$, L = M

Eugene Asarin

TA: an interesting subclass of HA

Decidability

Automata and language theory

Verification of TA in practice

Model-checking etc.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Reminder: decidability for TA

- We can decide: Reach, $L \neq \emptyset$, $L \cap M = \emptyset$, $w \in L$
- Undecidable: L = all the words; $L \subset M$, L = M

Verification problem

Given a system S and a property P, verify that S satisfies P.

Eugene Asarin

TA: an interesting subclass of HA

Decidability

Automata and language theory

Verification of TA in practice

Verification approaches

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

For simple safety properties:

- Represent S by a TA A_S .
- Represent P as ¬Reach(Init,Bad).
 Empty language
- Apply reachability algorithm.(empty language)

For all kind of properties

(even with ω -behaviors)

- Represent S by a TA A_S . language = possible behaviors
- Represent $\neg P$ by a TA $A_{\neg P}$. language=bad behaviors
- Check that $L(A_S) \cap L(A_{\neg P}) = \emptyset$

Eugene Asarin

TA: an interesting subclass of HA

Decidability

Automata and language theory

Verification of TA in practice

Verification approaches

For simple safety properties:

- Represent S by a TA A_S .
- Represent P as ¬Reach(Init,Bad).
- Apply reachability algorithm.

For all kind of properties

(even with ω -behaviors)

- Represent S by a TA A_S .
- Represent $\neg P$ by a TA $A_{\neg P}$.
- Check that $L(A_S) \cap L(A_{\neg P}) = \emptyset$

Or express P in a temporal logic and use some model-checking.

Eugene Asarin

TA: an interesting subclass of HA

Decidability

Automata and language theory

Verification of TA in practice

A simple verification example

Exercise

How to verify this?

System A bus passes every 7 to 9 minutes. A taxi passes every 6 to 8 minutes. At noon a bus and a taxi passed.

Property Between 12:05 and 12:30, within 5 minutes after every bus, a taxi passes.

Eugene Asarin

TA: an interesting subclass of HA

Decidability

Automata and language theory

Verification of TA in practice

Reachability in practice: no regions

Fact

Real verification tools, e.g. UPPAAL, do not use the region automaton. They apply a variant of the algorithm we know.

Eugene Asarin

TA: an interesting subclass of HA

Decidability

Automata and language theory

Verification of TA in practice

Reachability in practice: no regions

Fact

Real verification tools, e.g. UPPAAL, do not use the region automaton. They apply a variant of the algorithm we know.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Algorithm B

 $\begin{array}{l} \mathsf{F}{=}\mathsf{Init} \\ \textbf{repeat} \\ \qquad \mathsf{F}{=}\mathsf{F} \cup \mathsf{SuccFlow}(\mathsf{F}) \cup \mathsf{SuccJump}(\mathsf{F}) \\ \qquad \mathsf{Widen}(\mathsf{F}) \\ \textbf{until} \quad (\mathsf{F}{\cap} \mathsf{Final} \neq \emptyset) | \mathsf{fixpoint} \end{array}$

say "reachable" | "unreachable"

Eugene Asarin

TA: an interesting subclass of HA

Decidability

Automata and language theory

Verification of TA in practice

Zones and DBMs

▲ロト ▲帰 ト ▲ 三 ト ▲ 三 ト の Q ()

What is needed to implement Algorithm B Data structure and basic algorithms for subsets of $Q \times \mathbb{R}^n$

Eugene Asarin

TA: an interesting subclass of HA

Decidability

Automata and language theory

Verification of TA in practice

Zones and DBMs

▲日▼▲□▼▲□▼▲□▼ □ ののの

What is needed to implement Algorithm B

Data structure and basic algorithms for subsets of $Q imes \mathbb{R}^n$

Definition

- Let $x_0 = 0$; let x_1, \ldots, x_n clocks.
 - Zone: polyhedron defined by a conjunction of constraints $x_i x_j \leq d_{ij}$ (or <) with $d_{IJ} \in \mathbb{N}$.
 - Difference bound matrix (DBM) for a zone: $D = (d_{ij})$.

Fact

A zone is a union of regions.

Eugene Asarin

TA: an interesting subclass of HA

Decidability

Automata and language theory

Verification of TA in practice

Zones and verification of TA

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Fact

Using DBMs, the following tests and operations on zones are easy $(O(n) - O(n^3))$:

- $Z_1 = Z_2$?; $Z = \emptyset$?; $Z_1 \cap Z_2$.
- SuccFlow(Z) and $Succ_{\delta}(Z)$ both are zones.

Eugene Asarin

TA: an interesting subclass of HA

Decidability

Automata and language theory

Verification of TA in practice

Zones and verification of TA

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Fact

Using DBMs, the following tests and operations on zones are easy $(O(n) - O(n^3))$:

- $Z_1 = Z_2$?; $Z = \emptyset$?; $Z_1 \cap Z_2$.
- SuccFlow(Z) and Succ $_{\delta}(Z)$ both are zones.

See Cormen, graph algorithms.

Eugene Asarin

TA: an interesting subclass of HA

Decidability

Automata and language theory

Verification of TA in practice

Zones and verification of TA

Fact

Using DBMs, the following tests and operations on zones are easy $(O(n) - O(n^3))$:

- $Z_1 = Z_2$?; $Z = \emptyset$?; $Z_1 \cap Z_2$.
- SuccFlow(Z) and Succ $_{\delta}(Z)$ both are zones.

Corollary

Unions of zones, represented $(q_1, D_1), \ldots, (q_n, D_n)$, are suitable to implement Algorithm B

▲日▼▲□▼▲□▼▲□▼ □ ののの

Eugene Asarin

TA: an interesting subclass of HA

Decidability

Automata and language theory

Verification of TA in practice

Algorithm B

F=Initrepeat $F=F \cup SuccFlow(F) \cup SuccJump(F)$ Widen(F)

until $(F \cap Final \neq \emptyset)$ fixpoint **say** "reachable" | "unreachable"

Termination

Eugene Asarin

TA: an interesting subclass of HA

Decidability

Automata and language theory

Verification of TA in practice

Algorithm B

F = Init

repeat

 $\begin{array}{l} \mathsf{F}{=}\mathsf{F} \cup \mathsf{SuccFlow}(\mathsf{F}) \cup \mathsf{SuccJump}(\mathsf{F})\\ \textbf{Widen}(\mathsf{F})\\ \textbf{until} \quad (\mathsf{F}{\cap} \mathsf{Final} \neq \emptyset) | \ \mathsf{fixpoint}\\ \textbf{say} \ "reachable" \mid "unreachable" \end{array}$

To ensure termination we must widen In each DBM, when $c_{ij} > M$ replace $c_{ij} := \infty$.

When C_ij <-M replace c_ij:=-M

Termination

Eugene Asarin

TA: an interesting subclass of HA

Decidability

Automata an language theory

Verification of TA in practice

Algorithm B

 $\begin{array}{l} \mathsf{F}=\mathsf{Init} \\ \textbf{repeat} \\ \mathsf{F}=\mathsf{F} \cup \mathsf{SuccFlow}(\mathsf{F}) \cup \mathsf{SuccJump}(\mathsf{F}) \\ \textbf{Widen}(\mathsf{F}) \\ \textbf{until} \quad (\mathsf{F} \cap \mathsf{Final} \neq \emptyset) | \text{ fixpoint} \\ \textbf{say "reachable"} | "unreachable" \end{array}$

To ensure termination we must widen In each DBM, when $c_{ij} > M$ replace $c_{ij} := \infty$. Theorem Algorithm B is correct and terminates (and used in practice)

Termination

Eugene Asarin

Decision by reduction to TA

Decision using finite bisimulations

Decision using planar topology

Part III

Back to Hybrid automata: decidability

Eugene Asarin

Decision by reduction to TA

Decision using finite bisimulations

Decision using planar topology

7 Decision by reduction to TA

8 Decision using finite bisimulations

O Decision using planar topology

Outline

▲ロト ▲御 ▶ ▲臣 ▶ ▲臣 ▶ ● 臣 ● のへで

Eugene Asarin

Decision by reduction to TA

Decision using finite bisimulations

Decision using planar topology

⑦ Decision by reduction to TA

8 Decision using finite bisimulations

Decision using planar topology

Outline

Eugene Asarin

Decision by reduction to TA

Decision using finite bisimulations

Decision using planar topology

Reduction to TA : simple cases

Fact

Reachability is decidable for the following subclasses of HA, it is reduced to TA reachability.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

• Like TA, rational constants.

Eugene Asarin

Decision by reduction to TA

Decision using finite bisimulations

Decision using planar topology

Reduction to TA : simple cases

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Fact

Reachability is decidable for the following subclasses of HA, it is reduced to TA reachability.

• Like TA, rational constants. **Reduction**: Multiply all the guards by the common denominator K, you obtain a timed automaton with the same reachability (location to location).

Eugene Asarin

Decision by reduction to TA

Decision using finite bisimulations

Decision using planar topology

Reduction to TA : simple cases

Fact

Reachability is decidable for the following subclasses of HA, it is reduced to TA reachability.

- Like TA, rational constants.
- Like TA, but the rate of each clock = arbitrary rational: $\dot{x}_i = r_i$ (the same everywhere).

Eugene Asarin

Decision by reduction to TA

Decision using finite bisimulations

Decision using planar topology

Reduction to TA : simple cases

Fact

Reachability is decidable for the following subclasses of HA, it is reduced to TA reachability.

- Like TA, rational constants.
- Like TA, but the rate of each clock = arbitrary rational: x
 i = r
 i (the same everywhere).

 Reduction: Change of variables x
 i = x
 i / r
 i (and corresponding change guards) transform the system into a TA with the same reachability.

▲日▼▲□▼▲□▼▲□▼ □ ののの

Eugene Asarin

Decision by reduction to TA

Decision using finite bisimulations

Decision using planar topology

Reduction to TA : simple cases

Fact

Reachability is decidable for the following subclasses of HA, it is reduced to TA reachability.

- Like TA, rational constants.
- Like TA, but the rate of each clock = arbitrary rational: $\dot{x}_i = r_i$ (the same everywhere).
- Initialized skewed-clock automata Like TA, but in a state q we have that x_i = r_{iq} (may depend on the state). Restriction: when we change rate, we forget the value. Formally, for any transition p → q, either r_{ip} = r_{iq} or x_i is reset.

▲日▼▲□▼▲□▼▲□▼ □ ののの

Eugene Asarin

Decision by reduction to TA

Decision using finite bisimulations

Decision using planar topology

Reduction to TA : simple cases

Fact

Reachability is decidable for the following subclasses of HA, it is reduced to TA reachability.

- Like TA, rational constants.
- Like TA, but the rate of each clock = arbitrary rational: $\dot{x_i} = r_i$ (the same everywhere).
- Initialized skewed-clock automata Like TA, but in a state q we have that $\dot{x}_i = r_{iq}$ (may depend on the state). Restriction:when we change rate, we forget the value. Formally, for any transition $p \rightarrow q$, either $r_{ip} = r_{iq}$ or x_i is reset.

Reduction: Change of variables $\bar{x}_i = x_i/r_{iq}$ at state q. It works because of the restriction.

Eugene Asarin

Decision by reduction to TA

Decision using finite bisimulations

Decision using planar topology

Rectangular Hybrid Automata

▲ロ▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ ヨー のなべ

Let us generalize

We want to extend the previous example to the largest possible decidable class.

Eugene Asarin

Decision by reduction to TA

Decision using finite bisimulations

Decision using planar topology

Rectangular Hybrid Automata

Let us generalize

We want to extend the previous example to the largest possible decidable class.

Definition

The class of Rectangular Hybrid automata is defined as follows:

- Variables $x_1, \ldots x_n$.
- Dynamics at each state q : inclusion x_i ∈ [a_{iq}, b_{iq}] (for each i)
- Invariant at each state q, and guard of each transition : $x_i \in [a_i, b_i]$
- Reset on each transition : either x_i is unchanged, or it is set to an arbitrary point of some interval : x_i :∈ [a., b.].

Eugene Asarin

Decision by reduction to TA

Decision using finite bisimulations

Decision using planar topology

Rectangular Hybrid Automata

Let us generalize

We want to extend the previous example to the largest possible decidable class.

Definition

The class of Rectangular Hybrid automata is defined as follows:

- Variables $x_1, \ldots x_n$.
- Dynamics at each state q : inclusion x_i ∈ [a_{iq}, b_{iq}] (for each i)
- Invariant at each state q, and guard of each transition : $x_i \in [a_i, b_i]$
- Reset on each transition : either x_i is unchanged, or it is set to an arbitrary point of some interval : x_i :∈ [a., b.].

Fact

Reachability is undecidable for RHA.

Eugene Asarin

Decision by reduction to TA

Decision using finite bisimulations

Decision using planar topology

Initialized Rectangular Hybrid Automata

To obtain reachability one needs a restriction:

Definition (When we change rate, we forget the value) Initialized RHA should reset x_i on each transition that changes its rate.

Eugene Asarin

Decision by reduction to TA

Decision using finite bisimulations

Decision using planar topology

Initialized Rectangular Hybrid Automata

To obtain reachability one needs a restriction:

Definition (When we change rate, we forget the value) Initialized RHA should reset x_i on each transition that changes its rate.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Theorem (Henzinger et al.)

Reachability is decidable for Initialized RHA.

Eugene Asarin

Decision by reduction to TA

Decision using finite bisimulations

Decision using planar topology

Initialized Rectangular Hybrid Automata

To obtain reachability one needs a restriction:

Definition (When we change rate, we forget the value) Initialized RHA should reset x_i on each transition that changes its rate.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Theorem (Henzinger et al.)

Reachability is decidable for Initialized RHA.

Probably the "largest" known decidable class of HA!

Eugene Asarin

Decision by reduction to TA

Decision using finite bisimulations

Decision using planar topology

Decision by reduction to TA

8 Decision using finite bisimulations

Observe the second s

Outline

▲ロト ▲母 ト ▲目 ト ▲目 - ● ● ●

o-minimal automata

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Eugene Asarin

reduction TA

Decision using finite bisimulations

Decision using planar topology

They have a complex, sometimes nonlinear dynamic, but they also forget the variable, when its equation changes.

Eugene Asarin

Part IV

Conclusions and perspectives

Eugene Asarin

Timed: Conclusions for a pragmatical user

- A useful and proper model of computer systems immersed in physical time : TA.
- Modeling and specification languages available.
- Efficient simulation, verification and synthesis tools available.

Eugene Asarin

Timed: perspectives for a researcher

- Develop a theory of timed languages. Algebra, logic, topology etc. (see my text http://hal.archives-ouvertes.fr/hal-00157685)
- Improve verification techniques.
- Study rich and decidable specification formalisms (logical, algebraic, etc.) for timed languages.
- etc.

Quantitative verification Information theory Runtime verification/monitoring Pattern-matching Machine learning