Information in timed words or size of timed languages

Eugene Asarin Aldric Degorre Cătălin Dima Bernardo Jacobo Inclán

2024, MPRI 2-8-2

Eugene Asarin, Aldric Degorre , Cătălin Dim

Information in timed words

э

→ < ∃ →</p>

Outline

1 Introduction

- 2 Motivation 1: size/entropy of regular languages
- Operation Practical motivation: channel coding
- 4 Background and tools
- 5 Problem statement and motivation
- 6 The classification results
- 2 Easy case: Computing the Bandwidth of Simply-Timed Graphs
- 8 Main result: Computing the Bandwidth of Meager Timed Automata
- Onclusion

A D N A B N A B N A B N

Our research project 2009-

Problem

- understand what is quantity of information in timed words/languages
- compute it for timed regular languages
- create timed theory of codes, with channels, transducers etc
- get insights, apply to other theoretical questions
- go to applications to data transmission/compression

Our research project 2009-

Problem

- understand what is quantity of information in timed words/languages
- compute it for timed regular languages
- create timed theory of codes, with channels, transducers etc
- get insights, apply to other theoretical questions
- go to applications to data transmission/compression

Participants since 2009: four of us and...

Nicolas Basset, Dominique Perrin, Marie-Pierre Béal, Romain Aïssat

Our previous work

More or less solved for information in bits per event

This talk

A progress report for information in bits per second

Eugene Asarin, Aldric Degorre , Cătălin Dim

Information in timed words

3/44

Outline

Introduction

2 Motivation 1: size/entropy of regular languages

- 3 Practical motivation: channel coding
- 4 Background and tools
- 5 Problem statement and motivation
- 6 The classification results
- 2 Easy case: Computing the Bandwidth of Simply-Timed Graphs
- 8 Main result: Computing the Bandwidth of Meager Timed Automata
- Onclusion

(日) (同) (日) (日)

Size of (Information in) Languages

Defining entropy (Chomsky-Miller)

- Take a language L ⊂ Σ^{*}.
- Count the words of length n: find $\#L_n$
- Typically it grows exponentially
- Growth rate entropy $\mathcal{H}(L) = \limsup \frac{\log_2 \# L_n}{n}$

Size of (Information in) Languages

Defining entropy (Chomsky-Miller)

- Take a language L ⊂ Σ^{*}.
- Count the words of length n: find $\#L_n$
- Typically it grows exponentially
- Growth rate entropy $\mathcal{H}(L) = \limsup \frac{\log_2 \# L_n}{n}$

Explaining the definition

- Size measure: $\#L_n \approx 2^{n\mathcal{H}}$.
- Compression rate (in bits/symbol) for a typical $w \in L$, i.e. $|w.zip| \approx \mathcal{H}|w|$
- Information content of a typical $w \in L$ (bits/symbol)
- Topological entropy of a subshift.

5/44

Entropy of Regular Languages

Computing $\mathcal{H}(L(A))$ for a deterministic A

- Remove unreachable states
- Write down the adjacency matrix *M*.
- Compute $\rho = \rho(M)$ its spectral radius.
- Then $\mathcal{H} = \log \rho$.

(4) (日本)

Entropy of Regular Languages

Computing $\mathcal{H}(L(A))$ for a deterministic A

- Remove unreachable states
- Write down the adjacency matrix M.
- Compute $\rho = \rho(M)$ its spectral radius.
- Then $\mathcal{H} = \log \rho$.

Proof

- $\#L_n(i \to j) = M_{ii}^n$
- Hence $#L_n =$ sum of some elements of M^n
- Perron-Frobenius theory of nonnegative matrices $\Rightarrow \#L_n \approx \rho(M)^n \Rightarrow \mathcal{H}(L) = \log \rho(M)$

Entropy of regular languages — example

- Words of lengths 0, 1, 2...: {ɛ}; {a, b}; {aa, ab, ba}; {aaa, aab, aba, baa, bab, bac}; {aaaa, aaab, aaba, abaa, abab, abac, baaa, bab, baca, baba, babb} ...
- Cardinalities: 1,2,3,6,11, ...
- $|L_n| \approx (1.80194)^n = \rho(M)^n = 2^{0.84955n}$. entropy: $\mathcal{H} = \log \rho(M) \approx 0.84955$.

Outline

1 Introduction

- 2 Motivation 1: size/entropy of regular languages
- Operation Practical motivation: channel coding
 - 4 Background and tools
- 5 Problem statement and motivation
- 6 The classification results
- 2 Easy case: Computing the Bandwidth of Simply-Timed Graphs
- 8 Main result: Computing the Bandwidth of Meager Timed Automata
- Onclusion

A D N A B N A B N A B N

Constrained channel coding

Given:

- Language S: possible messages issued by a source
- Language C: words that can be transmitted through a channel

Goal:

• How to encode the messages for transmission?

• • = • • = •

The EFMPlus code [Immink]

Used in DVD.

Description of the coding problem

- Source: {0,1}*
- Channel: words of $\{0,1\}^*$ without blocks 11, 101, 0000000000.

Efficiency of EFMPlus

- EFMPlus rate: 1/2.
- Optimal rate for this problem: 0.5418.

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

Discrete case: definition of coding

Definition

$\phi: S \rightarrow C$ is an encoding with rate α and delay d if:

- Its rate is bounded by α : $|w| \ge \alpha |\phi(w)|$: no size explosion
- It is injective with delay d: if |w| = |w'| et $|u| = |u'| \ge d$ then $\phi(wu) = \phi(w'u') \Rightarrow w = w'$: decoding is possible

Discrete case: characterization

```
Definition (a key tool)
```

The entropy rate of a language: $h(L) = \lim_{n \to \infty} \frac{\log |L_n|}{n}$

Intuition:

h(L) is the information content of the language in bits/symbol

Theorem (Existence of encodings)

For "regular" S and C:

- Sufficient condition: $\alpha h(S) < h(C)$
- Necessary condition: $\alpha h(S) \leq h(C)$

イロト 不得 トイヨト イヨト

Outline

1 Introduction

- 2 Motivation 1: size/entropy of regular languages
- Operation Practical motivation: channel coding
- 4 Background and tools
- 5 Problem statement and motivation
- 6 The classification results
- 2 Easy case: Computing the Bandwidth of Simply-Timed Graphs
- 8 Main result: Computing the Bandwidth of Meager Timed Automata
- Onclusion

Timed automata and languages: our main object of study A distance on timed words, because we should proceed with some precision ε wrt to a distance ε -entropy and capacity: a standard way of measuring *information* in continuous sets

Pseudo-distance on timed words - [ABD18]

Required: a distance

- should be meaningful
- should compare timed words with different numbers of events
- should be compact on bounded duration timed words

Definition

Given
$$u=(a_1,t_1)\dots(a_n,t_n)$$
 and $v=(b_1,s_1)\dots(b_m,s_m)$, let

$$\overrightarrow{d}(u,v) = \overleftarrow{d}(v,u) = \max_{i} \min_{j} \{ |t_i - s_j| : b_j = a_i \}; \quad d = \max(\overrightarrow{d}, \overleftarrow{d})$$

Comment

 $\vec{d}(u, v)$ is small if for each event in u, exists a matching event in v, at a close date.

Eugene Asarin, Aldric Degorre , Cătălin Dima

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Distance: examples

< ロ > < 同 > < 回 > < 回 > < 回 > <

Distance: examples

$$\overrightarrow{d}(u,v) = 0.2; \quad \overleftarrow{d}(u,v) = 0.3; \quad d(u,v) = 0.3$$

Eugene Asarin, Aldric Degorre , Cătălin Dim

16/44

イロト イポト イヨト イヨト

Reminder: information in continuous sets

- Q: Given a continuous set M, how much information contains x ∈ M (what is the file size to describe x)?
- A: ∞ , infinitely many bits needed... it was a stupid question.

Reminder: information in continuous sets

- Q: Given a continuous set M, how much information contains x ∈ M (what is the file size to describe x)?
- A: ∞ , infinitely many bits needed...it was a stupid question.
- Q: Given a continuous set M, and ε > 0, how much information contains x ∈ M (what is the file size to describe x with precision ε > 0)?
- A: Nice question, the answer by Kolmogorov & Tikhomirov is ε-entropy (and ε-capacity).

Defining ε -entropy

Definition (ε -net)

Given M a metric space and $\varepsilon > 0$, a subset $S \subset M$ is an ε -net if $\forall x \in M \exists y \in S : d(x, y) < \varepsilon$ If M is compact, a finite ε -net always exists.

Definition (ε -entropy)

$$H_{\varepsilon}(M) = \log \min\{|S| : S \subset M \text{ an } \varepsilon\text{-net}\}$$

Explanation

To describe $x \in M$ with precision ε in $H_{\varepsilon}(M)$ bits:

- fix an optimal ε-net S;
- choose $y \in S$ such that $d(x, y) < \varepsilon$;
- write in binary the ordinal number of y in S.

< ロ > < 同 > < 回 > < 回 >

Entropy & capacity: interpretation & inequalities

ε -entropy

Minimal information needed to describe A with precision ε

$\varepsilon\text{-capacity}$

Maximal information distinguishable in A if observed with error ε

Inequalities

$\mathcal{C}_{2\varepsilon}(A) \leq \mathcal{H}_{\varepsilon}(A) \leq \mathcal{C}_{\varepsilon}(A)$

Eugene Asarin, Aldric Degorre , Cătălin Dim

Outline

1 Introduction

- 2 Motivation 1: size/entropy of regular languages
- Operation Practical motivation: channel coding
 - Background and tools
- 5 Problem statement and motivation
 - 6 The classification results
- 7 Easy case: Computing the Bandwidth of Simply-Timed Graphs
- 8 Main result: Computing the Bandwidth of Meager Timed Automata
- Onclusion

イロト イヨト イヨト イヨト

Our measure of information per time unit

Definition (Bandwidth of a timed language)

$$\mathcal{BH}_{\varepsilon}(L) = \limsup_{T \to \infty} \frac{\mathcal{H}_{\varepsilon}(L_T)}{T} \qquad \qquad \mathcal{BC}_{\varepsilon}(L) = \limsup_{T \to \infty} \frac{\mathcal{C}_{\varepsilon}(L_T)}{T}$$

Shorthands: \mathcal{B} for any of $\mathcal{BC}, \mathcal{BH}$. Also $\mathcal{B}(\mathcal{A})$ for $\mathcal{B}(\mathcal{L}(\mathcal{A}))$

Why bandwidth is relevant?

Why, indeed?

- mathematically natural measure of info/time
- always $< \infty$, often > 0.
- our previous work on channel coding- Bernardo's MPRI internship, [Formats'22]
 - $\mathcal{B}(\mathsf{Source}) < \mathcal{B}(\mathsf{Channel}) \Rightarrow \mathsf{bounded}\mathsf{-delay} \mathsf{ coding is possible}$
 - $\mathcal{B}(\mathsf{Source}) > \mathcal{B}(\mathsf{Channel}) \Rightarrow \mathsf{it} \mathsf{ is impossible}$

up to some dirty details.

and it will provide theoretical insights

A B M A B M

Two problems

Problem (Our big challenge, not yet completely done)

Given a timed automaton A and ε , compute the bandwidth $\mathcal{B}_{\varepsilon}(A)$, as precisely as possible.

Problem (In next slides)

Given a timed automaton A, explore the rough asymptotic behavior of $\mathcal{B}_{\varepsilon}(A)$ w.r.t. $\varepsilon \to 0$.

Outline

1 Introduction

- 2 Motivation 1: size/entropy of regular languages
- Operation Practical motivation: channel coding
- 4 Background and tools
- 5 Problem statement and motivation
- 6 The classification results
- Easy case: Computing the Bandwidth of Simply-Timed Graphs
- 8 Main result: Computing the Bandwidth of Meager Timed Automata
- Onclusion

Classification

Definition (Three classes)

A timed language *L* is meager whenever $\mathcal{B}_{\varepsilon}(L) = O(1)$ normal whenever $\mathcal{B}_{\varepsilon}(L) = \Theta(\log 1/\varepsilon)$ obese whenever $\mathcal{B}_{\varepsilon}(L) = \Theta(1/\varepsilon)$ as $\varepsilon \to 0$.

Information in timed words

Before we start the examples

Trivial remarks on information

One letter $a \in \Sigma$ contains $\log(\#\Sigma)$ bits, i.e. $\mathcal{H}_{\varepsilon}(\Sigma) = \mathcal{C}_{\varepsilon}(\Sigma) = \log(\#\Sigma)$. One real number $x \in [5, 6]$ (with precision ε) contains $\log(1/\varepsilon)$ bits, i.e. $\mathcal{H}_{\varepsilon/2}[5, 6] \approx \mathcal{C}_{\varepsilon}[5, 6] \approx \log(1/\varepsilon)$.

- 4 回 ト 4 三 ト 4 三 ト

Meager automata: $\mathcal{BH}_{\varepsilon} = O(1)$, simple examples

Explanation of their meagerness

Impossible to encode info in reals, on the long run. Only discrete information.

Eugene Asarin, Aldric Degorre , Cătălin Dim

Information in timed words

2024, MPRI 2-8-2 27 / 44

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

Normal automata: $\mathcal{BH}_{\varepsilon} = \Theta(\log 1/\varepsilon)$

Explanation of its normality

Every 5-6 sec we can freely choose 2 real durations. Each time we transmit log $1/\varepsilon$ bits. Thus $\mathcal{B}_{\varepsilon} = \frac{2}{5} \log 1/\varepsilon$ bit/sec

Eugene Asarin, Aldric Degorre , Cătălin Dim

- 4 回 ト 4 ヨ ト 4 ヨ ト

Obese automata: $\mathcal{BH}_{arepsilon}=\Theta(1/arepsilon)$

Explanation of their obesity

- Every ε sec we transmit one bit (a or nothing). $\mathcal{B} = 1/\varepsilon$ bit/sec.
- Every ε sec we transmit 3 bits (subset of $\{a, b, c\}$), thus $\mathcal{B} = 3/\varepsilon$.

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

Obese automata: $\mathcal{BH}_{arepsilon}=\Theta(1/arepsilon)$

Explanation of their obesity

- Every ε sec we transmit one bit (a or nothing). $\mathcal{B} = 1/\varepsilon$ bit/sec.
- Every ε sec we transmit 3 bits (subset of $\{a, b, c\}$), thus $\mathcal{B} = 3/\varepsilon$.
- After 1 sec of transmission we spend 5 sec to reset clocks, $\mathcal{B} \approx 1/6\varepsilon$.

Towards structural characterization of the 3 classes

Plan: given a bounded deterministic timed automaton

- Split its states into regions (unit "triangles" simplices)
- Trim it (remove useless states)
- Map each edge (and path) into a finite monoid
- Define two patterns^a NM and O (in terms of monoids)
- Characterize classes by presence/absence of patterns

^anon-meagerness and obesity terns

Our results on one slide

We define two patterns NM and O

Theorem (Structural criteria)

- \mathcal{A} contains pattern $\mathsf{NM} \Rightarrow \mathcal{B}_{\varepsilon}(\mathcal{A}) = \Omega(\log 1/\varepsilon)$ (non-meager).
- \mathcal{A} does not contain $NM \Rightarrow \mathcal{B}_{\varepsilon}(\mathcal{A}) = O(1)$ (meager).
- A contains pattern $O \Rightarrow \mathcal{B}_{\varepsilon}(\mathcal{A}) = \Omega(1/\varepsilon)$ (obese).
- \mathcal{A} does not contain $O \Rightarrow \mathcal{B}_{\varepsilon}(\mathcal{A}) = O(\log 1/\varepsilon)$ (non-obese).

Theorem (Classification)

Every deterministic timed automaton is meager or normal or obese. The classification problem is PSPACE-complete.

Outline

1 Introduction

- 2 Motivation 1: size/entropy of regular languages
- Operation Practical motivation: channel coding
- 4 Background and tools
- 5 Problem statement and motivation
- 6 The classification results
- Easy case: Computing the Bandwidth of Simply-Timed Graphs
- 8 Main result: Computing the Bandwidth of Meager Timed Automata
- Onclusion

Simply-Timed Graphs

An example

Its language

Words accepted by the graph, e.g. (5, b)(10, c)(13, a)(13, b)(16, a)(18, c)

Eugene Asarin, Aldric Degorre , Cătălin Dima

Information in timed words

э

< ロ > < 同 > < 回 > < 回 > < 回 > <

Bandwidth of Simply-Timed Graphs

Definition

For a set of timed words S, its size $\Upsilon(S)$ is the cardinality of the largest 0-separated set in S

Definition

The growth rate of an STG ${\mathcal A}$ is defined as

$$eta(\mathcal{A}) = \lim_{T o \infty} rac{\log \Upsilon(L_T(\mathcal{A}))}{T},$$

Remark

Let 1/D be the smallest non-zero timing in the STA. For $\varepsilon < 1/2D$ the growth rate coincides with both bandwidths:

$$\mathcal{BC}_{\varepsilon}(\mathcal{A}) = \mathcal{BH}_{\varepsilon}(\mathcal{A}) = \beta(\mathcal{A}).$$

Eugene Asarin, Aldric Degorre , Cătălin Dim

ヘロト 人間ト 人間ト 人間ト

Computing the growth rate of an STG

0-elimination and determinization

z-matrix and characteristic equation

$$m_{ij}(z) = \sum_{(q_i,d,a,q_j)\in\Delta} z^d,$$

$$M(z) = \begin{pmatrix} z^3 + 2z^5 & z^3 \\ z^2 & z^2 \end{pmatrix}$$

• Characteristic equation: det(I - M(z)) = 0

- *z*₀: its root of smallest modulus
- The growth rate: $eta(\mathcal{A}) = -\log_2 |z_0|$

• In our case:
$$2z^7 - 2z^5 - z^3 - z^2 + 1 = 0$$
,
 $z_0 \approx 0.698776, \beta(\mathcal{A}) \approx 0.517098$

Outline

1 Introduction

- 2 Motivation 1: size/entropy of regular languages
- Practical motivation: channel coding
- 4 Background and tools
- 5 Problem statement and motivation
- 6 The classification results
- Easy case: Computing the Bandwidth of Simply-Timed Graphs
- 8 Main result: Computing the Bandwidth of Meager Timed Automata

Onclusion

ヘロト 人間ト 人間ト 人間ト

Barycenters of a clock region

Definition (faces of a region)

A (k - 1)-dimensional face is the convex hull of any subset of k > 0 vertices.

Faces are simplices. Each vertex or the whole closed region are considered as faces.

Definition (barycenters of a region)

To each such face f with vertices v_1, \ldots, v_k we associate its *barycenter* $\alpha(f) = \frac{1}{k} \sum_{i=1}^{k} v_k$

From Meager Automata to STG, 1/2

Definition (barycentric abstraction of a transition $p \xrightarrow{\delta} q$)

Link barycenters b_1 of p and b_2 of q whenever their faces have the same dimension and $L_{\delta}(b_1, b_2) = \{ta\}$ is a singleton. Label with duration t and letter a.

From Meager Automata to STG, 2/2

Definition (barycentric abstraction of an RsTA)

Abstract every transition of A, the resulting STG is denoted $\alpha(A)$.

Main results

Theorem (characterisation of the bandwidth of Meager TA)

• barycentric abstraction preserves the bandwidth of Meager RsTA

 $\mathcal{B}_{arepsilon}(\mathcal{A})=\mathcal{B}_{0}(lpha(\mathcal{A}))$ for arepsilon small enough

• thus the bandwidth of meager TA is computable (as log of an algebraic number)

Overall algorithm: given a meager TA

- put it into region-split form
- compute its barycentric abstraction (STG)
- proceed with 0-elimination and determinization
- write down the characteristic equation
- find its smallest root
- compute the bandwidth

Example: computing the bandwidth of a meager TA A meager RsTA, barycentric abstraction, 0-elimination

z-matrix and bandwidth

$$M(z) =$$
 block diagonal with blocks

Eugene Asarin, Aldric Degorre , Cătălin Dim

Information in timed words

 $2z^{1/2}$

2024, MPRI 2-8-2

2*z*

0

42 / 44

Outline

1 Introduction

- 2 Motivation 1: size/entropy of regular languages
- Operation Practical motivation: channel coding
- 4 Background and tools
- 5 Problem statement and motivation
- 6 The classification results
- 7 Easy case: Computing the Bandwidth of Simply-Timed Graphs
- 8 Main result: Computing the Bandwidth of Meager Timed Automata

Onclusion

Two challenges

compute the bandwidth

bandwidth $pprox lpha, lpha \log(1/arepsilon), lpha/arepsilon$, compute the coefficient lpha

- already done for meager automata (CIAA'24)
- We believe we can do it for obese ones
- normal ones still resist

Can be started as MPRI internship!

invent optimal timed transducers, codes, compressions

- 4 回 ト 4 ヨ ト 4 ヨ ト