
Biol. Cybern. 92, 38–53 (2005)
DOI 10.1007/s00422-004-0527-x
© Springer-Verlag 2004

On partial contraction analysis for coupled nonlinear oscillators

Wei Wang, Jean-Jacques E. Slotine
Nonlinear Systems Laboratory, Massachusetts Institute of Technology,
Cambridge, MA 02139, USA

Received: 30 April 2003 / Accepted: 30 September 2004 / Published online: 10 December 2004

Abstract. We describe a simple yet general method to
analyze networks of coupled identical nonlinear oscil-
lators and study applications to fast synchronization,
locomotion, and schooling. Specifically, we use nonlin-
ear contraction theory to derive exact and global (rather
than linearized) results on synchronization, antisynchro-
nization, and oscillator death. The method can be applied
to coupled networks of various structures and arbitrary
size. For oscillators with positive definite diffusion cou-
pling, it can be shown that synchronization always occurs
globally for strong enough coupling strengths, and an ex-
plicit upper bound on the corresponding threshold can
be computed through eigenvalue analysis. The discussion
also extends to the case when network structure varies
abruptly and asynchronously, as in “flocks” of oscillators
or dynamic elements.

1 Introduction

Initiated by Huygens in the 17th century, the study of
coupled oscillators involves today a variety of research
fields, such as mathematics (Coombes 2001; Ravasz et. al.
2000; Strogatz 1994, 2000), biology (Collins and Stewart
1993a; Murray 1993; Strogatz and Stewart 1993), neuro-
science (Brody and Hopfield 2003; Hopfield and Brody
2001; Kopell 2000; Manoret et al. 1999; Neuenschwan-
der et al. 2002; Singer 1999; Wolf 2001; Yen et al. 1999),
robotics (Bay John and Hemami 1987; Krishnaprasad and
Tsakiris 2001), and electronics (Chua 1998), to name just a
few. Theoretical analysis of coupled oscillators can be per-
formed either in phase space, as, e.g., in the classical Ku-
ramoto model (Kuramoto 1984; Strogatz 2000; Winfree
1967), or in state space, as, e.g., in the fast threshold modu-
lation model (Kopell and Somers 1995; Somers and Kopell
1993, 1995). While nonlinear state-space models are much
closer to physical reality and apply to arbitrary initial con-
ditions, there is still no general and explicit analysis tool
to study them. In this paper, a new method is developed

Correspondence to: J.J.E. Slotine
(e-mail: wangwei@mit.edu, jjs@mit.edu)

based on contraction analysis to study dynamic behaviors
of coupled nonlinear oscillators, with an emphasis on the
study of spontaneous synchronization.

Basically, a nonlinear dynamic system is called con-
tracting if initial conditions or temporary disturbances are
forgotten exponentially fast, so that all trajectories con-
verge to a unique trajectory. After a brief review of key
results of contraction theory (Lohmiller and Slotine 1998,
2000; Lohmiller 1999) in Sect. 2, we introduce the new
concept of partial contraction, which extends contraction
analysis to include convergence to behaviors or to specific
properties (such as equality of state components or con-
vergence to a manifold). Partial contraction provides a
very general analysis tool for investigating the stability of
large-scale systems. It is especially powerful for studying
synchronization behaviors, and it inherits from contrac-
tion the feature that convergence and long-term behavior
can be analyzed separately, leading to significant concep-
tual simplifications.

Section 3 first illustrates the method by analyzing the
synchronization behaviors of two coupled oscillators. Sec-
tion 4 then generalizes the analysis to coupled networks
of various structures and arbitrary size. For nonlinear sys-
tems with positive definite diffusive couplings, synchroni-
zation will always occur if coupling strengths are strong
enough, and an explicit upper bound on the corresponding
threshold can be computed through eigenvalue analysis.
The results are exact and global, rather than linearized,
and can be easily extended to study nonlinear couplings,
unidirectional couplings, and positive semidefinite cou-
plings. We relate the synchronization rate to the network’s
geometric properties such as connectivity, graph diameter,
or mean distance. A fast inhibition mechanism is stud-
ied. Finally, we build flocking and schooling models by
extending the previous analysis to coupled networks with
switching topology and also build the network models
with a leader-followers structure. Concluding remarks are
offered in Sect. 5.

Most of the results in the paper are illustrated using
Van der Pol oscillators whose relaxation behavior can be
made to resemble closely some standard neuron models,
for instance. In contrast to previous approaches such as
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those of, e.g., Chakraborty and Rand (1988), Rand and
Holmes (1980), and Storti and Rand (1982), the results
are exact and global.

2 Contraction and partial contraction

Basically, a nonlinear time-varying dynamic system will be
called contracting if initial conditions or temporary distur-
bances are forgotten exponentially fast, i.e., if trajectories
of the perturbed system return to their nominal behavior
with an exponential convergence rate. The concept of par-
tial contraction allows one to extend the applications of
contraction analysis to include convergence to behaviors
or to specific properties (such as equality of state compo-
nents or convergence to a manifold) rather than trajecto-
ries.

2.1 Contraction theory

We briefly summarize the basic definitions and main re-
sults of contraction theory here, details of which can be
found in Lohmiller and Slotine (1998). Consider a non-
linear system

ẋ = f(x, t) , (1)

where x ∈ R
m is a state vector and f is an m × 1 vector

function. Assuming f(x, t) is continuously differentiable,
we have
d
dt

(δxTδx)=2 δxTδẋ =2 δxT ∂f
∂x

δx ≤2 λmax δxTδx ,

where δx is a virtual displacement between two neighbor-
ing solution trajectories and λmax(x, t) is the largest eigen-
value of the symmetric part of the Jacobian J= ∂f

∂x . Hence,
if λmax(x, t) is uniformly strictly negative, any infinitesi-
mal length ‖δx‖ converges exponentially to zero. By path
integration at fixed time, this implies in turn that all the
solutions of the system (1) converge exponentially to a
single trajectory, independently of the initial conditions.
Note that differential analysis yields global results.

More generally, consider a coordinate transformation

δz =�δx ,

where �(x, t) is a uniformly invertible square matrix. One
has
d
dt

(δzTδz)=2 δzTδż =2 δzT (�̇+�
∂f
∂x

)�−1
δz ,

so that exponential convergence of ‖δz‖ to zero is guar-
anteed if the generalized Jacobian matrix

F = (�̇+�
∂f
∂x

)�−1

is uniformly negative definite. Again, this implies in turn
that all the solutions of the original system (1) converge
exponentially to a single trajectory, independently of the
initial conditions.

By convention, the system (1) is then called contract-
ing, f(x, t) is called a contracting function, and the abso-
lute value of the largest eigenvalue of the symmetric part

of F is called the system’s contraction rate with respect
to the uniformly positive definite metric M =�T�. Note
that in a globally contracting autonomous system, all tra-
jectories converge exponentially to a unique equilibrium
point (Lohmiller and Slotine 1998; Slotine 2003).

2.2 Feedback combination of contracting systems

One of the main features of contraction is that it is auto-
matically preserved through a variety of system combina-
tions. Here we extend the study of feedback combination
in (Lohmiller and Slotine 1998) and derive a result we will
use in Sect. 4.4. Consider two contracting systems and an
arbitrary feedback connection between them. The overall
dynamics of the generalized virtual displacements δzi can
be written as
d
dt

[
δz1
δz2

]
= F

[
δz1
δz2

]
,

with the symmetric part of the generalized Jacobian in the
form

Fs = 1
2

(F + FT)=
[

F1s G
GT F2s

]
,

where the subscript “s” refers to the symmetric part of
a matrix. By hypothesis the matrices F1s and F2s are uni-
formly negative definite. Thus F is uniformly negative defi-
nite if and only if (Horn and Johnson 1985, p. 472)

F2s <GT F−1
1s G .

Thus, a sufficient condition for the overall system to be
contracting is that

λ(F1s) λ(F2s) > σ 2(G), uniformly ∀t ≥0 , (2)

where λ(Fis) is the contraction rate of Fis and σ(G) is the
largest singular value of G. Indeed, condition (2) is equiv-
alent to

λmax(F2s)<λmin(F−1
1s ) σ 2(G)

and, for an arbitrary nonzero vector v,

vT F2s v <λmin(F−1
1s )σ 2(G)vTv ≤ vTGTF−1

1s Gv .

The result can be applied recursively to larger combina-
tions. Note that, from the eigenvalue interlacing theorem
(Horn and Johnson 1985),

λ(Fs) ≤min
i

λ(Fis) .

2.3 Partial contraction

We now introduce the concept of partial contraction,
which forms the basis of this paper. It derives from the
very simple but very general result which follows.

Theorem 1 Consider a nonlinear system of the form

ẋ = f(x,x, t) ,

and assume that the auxiliary system

ẏ = f(y,x, t)
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is contracting with respect to y. If a particular solution of the
auxiliary y-system verifies a smooth specific property, then
all trajectories of the original x-system verify this property
exponentially. The original system is said to be partially
contracting.

Proof The virtual, observer-like y-system has two partic-
ular solutions, namely, y(t)=x(t) for all t ≥0 and the solu-
tion with the specific property. Since all trajectories of the
y-system converge exponentially to a single trajectory, this
implies that x(t) verifies the specific property exponen-
tially. ��
Example 2.1 Consider a system of the form

ẋ = c(x, t) + d(x, t),

where function c is contracting in a constant metric.1 The
auxiliary contracting system may then be constructed as

ẏ = c(y, t) + d(x, t).

The specific property may consist, e.g., of a relationship
between state variables, or simply of a particular trajec-
tory. ��
Example 2.2 Consider a convex combination or interpo-
lation between contracting dynamics

ẋ =
∑

i

αi(x, t) fi (x, t),

where the individual systems ẋ = fi (x, t) are contracting
in a common metric M(x)=�T(x)�(x) and have a com-
mon trajectory xo(t) (for instance an equilibrium), with all
αi(x, t)≥0 and

∑
i αi(x, t)=1. Then all trajectories of the

system globally exponentially converge to the trajectory
xo(t). Indeed, the auxiliary system

ẏ =
∑

i

αi(x, t) fi (y, t)

is contracting (with metric M(y) ) and has x(t) and xo(t)
as particular solutions. ��
Example 2.3 Recent research in computational neurosci-
ence points out the importance of continuous attrac-
tors (Latham et al. 2003; Seung 1998). Consider (Hahn-
loser et al. 2003) a nonlinear neural network model

τ ẋi +xi =

∑

j

wji xj + bi




+

, i =1, . . . , n

with [a]+ =max(0, a) and constant τ >0, or in matrix form

τ ẋ +x = [Wx +b]+

with WT =W= [wij ]. If I−W is positive semidefinite and b
is in its range space, a line attractor exists (Hahnloser et al.
2003). To prove global exponential stability of this line

1 This condition of a constant metric is unduly restrictive and will
be omitted in what follows. One may simply require of function c
that the contraction properties of the auxiliary system not depend
on d(x, t).

attractor, arrange the eigenvalues λi of I − W in increas-
ing order, with λ2 >λ1 = 0. The corresponding eigenvec-
tors ui represent an orthonormal basis of the state space.
Consider now the auxiliary system

τ ẏ +y = [Wy +b]+ +λ2u1uT
1 (x(t)−y) .

Note that, given positive initial conditions, all components
of x and y remain positive. The y-system can be shown to
be contracting at the rate λ2/2τ (Wang and Slotine 2004)
using contraction analysis results for continuously switch-
ing systems (Lohmiller and Slotine 2000). Furthermore,
two particular solutions are y = x(t) and y = e + y∞ u1,
where e is a constant vector satisfying (I − W) e = b and
y∞ is a scalar variable defined by

τ ẏ∞ +y∞ =λ2uT
1 (x − e) .

Thus, x(t) verifies exponentially the specific property that
(x(t) − e) is aligned with u1. Hence all solutions of the
original system converge exponentially to a line attractor
of the form x= e+x∞ u1, where ẋ∞ =0 using the original
x dynamics. The actual value of x∞ is determined by the
initial conditions. ��

Note that contraction may be trivially regarded as a
particular case of partial contraction.

3 Two coupled oscillators

In this section, we first investigate coupled networks com-
posed only of two oscillators and then generalize the
results in the next section.

3.1 One-way coupling configuration

Consider a pair of one-way (unidirectional) coupled iden-
tical oscillators:{

ẋ1 = f(x1, t)

ẋ2 = f(x2, t)+u(x1)−u(x2)
, (3)

where x1, x2 ∈R
m are the state vectors, f(xi , t) the dynam-

ics of the uncoupled oscillators, and u(x1) − u(x2) the
coupling force.

Theorem 2 If the function f −u is contracting in (3), two
systems x1 and x2 will reach synchrony exponentially regard-
less of the initial conditions.

Proof The second subsystem, with u(x1) as input, is con-
tracting, and x2(t)=x1(t) is a particular solution. ��
Example 3.1 Consider two coupled identical Van der Pol
oscillators{
ẍ1 +α(x2

1 −1)ẋ1 +ω2x1 =0
ẍ2 +α(x2

2 −1)ẋ2 +ω2x2 =ακ(ẋ1 − ẋ2)
,

where α, ω, and κ are strictly positive constants (this
assumption will apply to all our Van der Pol examples).
Since the system

ẍ +α(x2 +κ −1)ẋ +ω2x =u(t)

is semicontracting for κ > 1 (see appendix), x2 will syn-
chronize to x1 asymptotically. ��
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Note that a typical engineering application with a one-
way coupling configuration is observer design, in which
case u(x1) represents the measurement. The result of The-
orem 2 can be easily extended to a network containing n
oscillators with a chain structure (or, more generally, a tree
structure)


ẋ1 = f(x1, t)

ẋ2 = f(x2, t)+u(x1)−u(x2)

· · ·
ẋn = f(xn, t)+u(xn−1)−u(xn)

, (4)

where the synchronization condition is the same as for
system (3).

3.2 Two-way coupling configuration

The meaning of synchronization may vary in different con-
texts. In this paper, we define synchronization of two (or
more) oscillators x1, x2 as corresponding to a complete
match, i.e., x1 = x2. Similarly, we define antisynchroniza-
tion as x1 =−x2. These two behaviors are called in-phase
synchronization and antiphase synchronization in many
communities.

3.2.1 Synchronization

Theorem 3 Consider two coupled systems. If the dynamics
equations verify

ẋ1 −h(x1, t) = ẋ2 −h(x2, t) ,

where the function h is contracting, then x1 and x2 will con-
verge to each other exponentially, regardless of the initial
conditions.

Proof Given initial conditions x1(0) and x2(0), denoted
by x1(t) and x2(t), the solutions of the two coupled sys-
tems. Define

g(x1,x2, t)= ẋ1 −h(x1, t)= ẋ2 −h(x2, t)

and construct the auxiliary system

ẏ =h(y, t)+g(x1(t),x2(t), t) .

This system is contracting since the function h is con-
tracting, and therefore all solutions of y converge together
exponentially. Since y=x1(t) and y=x2(t) are two par-
ticular solutions, this implies that x1(t) and x2(t) converge
together exponentially. ��

Remarks

– Theorem 3 can also be proved by constructing another
auxiliary system{

ẏ1 = h(y1, t) + g(x1,x2, t)

ẏ2 = h(y2, t) + g(x1,x2, t)
,

which has a particular solution verifying the specific
property y1 = y2. Since this auxiliary system is com-
posed of two independent subsystems driven by the
same inputs, the proof can be simplified as above by
using a auxiliary system of reduced dimension.

– Theorem 2 is a particular case of Theorem 3. So is, for
instance, a system of two-way coupled identical oscil-
lators of the form
{

ẋ1 = f(x1, t) + u(x2)−u(x1)

ẋ2 = f(x2, t) + u(x1)−u(x2)
. (5)

In such a system x1 tends to x2 exponentially if f −2u is
contracting. Furthermore, because the coupling forces
vanish exponentially, both oscillators tend to their orig-
inal limit cycle behavior, but with a common phase.

– Although contraction properties are central to the
analysis, the overall system itself in general is not con-
tracting, and the common phase of the steady states is
determined by the initial conditions x1(0) and x2(0).
This stresses the difference between contraction and
partial contraction.

– Theorem 3 can be easily extended to coupled discrete-
time systems, using discrete versions (Lohmiller and
Slotine 1998) of contraction analysis, to coupled hybrid
systems, and to coupled systems expressed by partial
differential equations.

– Contraction of the auxiliary system also implies that
bounded variations in subsystem dynamics lead to
bounded synchronization errors.

Example 3.2 Consider again two coupled identical Van
der Pol oscillators:{
ẍ1 +α(x2

1 −1)ẋ1 +ω2x1 =ακ1(ẋ2 − ẋ1)

ẍ2 +α(x2
2 −1)ẋ2 +ω2x2 =ακ2(ẋ1 − ẋ2)

.

One has

ẍ1 +α(x2
1 +κ1 +κ2 −1)ẋ1 +ω2x1

= ẍ2 +α(x2
2 +κ1 +κ2 −1)ẋ2 +ω2x2 .

From Theorem 3 and the result in the appendix we know
that these two oscillators will reach synchrony asymptot-
ically if κ1 +κ2 >1 for nonzero initial conditions. ��

3.2.2 Antisynchronization. In a seminal paper inspired by
Turing’s work (Murray 1993; Turing 1952), Smale (1976)
describes a mathematical model where two identical bio-
logical cells, inert by themselves, can be excited into oscil-
lations through diffusion interaction across their mem-
branes. Using Theorem 3, we can build a coupled system

{
ẋ1 =h(x1, t) + u(x2, t)−u(x1, t)

ẋ2 =h(x2, t) + u(x1, t)−u(x2, t)
(6)

to describe Smale’s model.

Theorem 4 If the uncoupled dynamics h in (6) is contract-
ing and odd in x, x1 +x2 will converge to zero exponentially
regardless of the initial conditions. Moreover, for nonzero
initial conditions, x1 and x2 will oscillate and reach antisyn-
chrony if the system

ż =h(z, t)−2u(z, t)

has a stable limit cycle.
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Proof Replace x2 by − x2 in Theorem 3. ��
Example 3.3 Consider specifically Smale’s example (Smale
1976), where

h(x, t)=A x +




−x3
1

0
0
0


 , u(x)= 1

2
K




x1
x2
x3
x4




with

A =




1+a 1 γ a 0
−1 a 0 γ a

−γ a 0 2a 0
0 −γ a 0 2a


 , K =




a 0 γ a 0
0 a 0 γ a

−γ a 0 −2a 0
0 −γ a 0 −2a


 .

For a <−1, h has a negative definite Jacobian and thus
is contracting, and h − 2u yields a stable limit cycle, so
that the two originally stable cells are excited into oscilla-
tions for nonzero initial conditions. Requiring in addition
that

√
2 < γ < 3/2 guarantee that all the eigenvalues of

K will be distinct, real, and strictly positive, so that K can
be transformed into a diagonal diffusion matrix through
a linear change of coordinates. ��

3.2.3 Oscillator death Inverse to Smale’s effect, in the
phenomenon called oscillator death (or amplitude death)
(Aronson et al. 1990; Bar-Eli 1985; Reddy et. al. 1998),
oscillators stop oscillating and stabilize at constant steady
states once they are coupled. Oscillator death happens if
the overall dynamics is contracting and autonomous, since
this implies that the system tends exponentially to a unique
equilibrium.

Example 3.4 Couple two Van der Pol oscillators with
asymmetric forces
{
ẍ1 +α(x2

1 −1)ẋ1 +ω2x1 =ακ(ẋ2 − ẋ1)

ẍ2 +α(x2
2 −1)ẋ2 +ω2x2 =ακ(−ẋ1 − ẋ2)

, (7)

where κ >1. By introducing new variables y1 and y2 as in
the appendix, we get a generalized Jacobian

F =




−α(x2
1 +κ −1) ω ακ 0
−ω 0 0 0
−ακ 0 −α(x2

2 +κ −1) ω
0 0 −ω 0


≤0,

whose symmetric part is simply that of two uncoupled
damped Van der Pol oscillators. Thus both systems will
tend to zero asymptotically. ��

3.3 Van der Pol oscillators with general couplings

As a conclusion to this section, we now consider two iden-
tical Van der Pol oscillators coupled in a very general way:
{
ẍ1 +α(x2

1 −1)ẋ1 +ω2x1 =α (γ ẋ2 −κẋ1)

ẍ2 +α(x2
2 −1)ẋ2 +ω2x2 =α (γ ẋ1 −κẋ2)

, (8)

where α is a positive constant. It can be proved as above
that, as long as the condition

| γ |>1−κ

is satisfied, x1 converges to x2 asymptotically for all γ ≥0
while x1 converges to −x2 asymptotically for all γ ≤ 0.
Note that if γ = 0, we get two independent stable sub-
systems. Both x1 and x2 tend to the origin, which can be
considered as a continuous connection between γ >0 and
γ <0.

Next we need to study the stable behavior of the coupled
systems in order to make sure that they keep oscillating or
tend to a stationary equilibrium. Assume first that γ >0;
we then have

ẍi +α(x2
i −1)ẋi +ω2xi →α(γ −κ)ẋi, i =1,2 ,

which gives the stable dynamics of x1 and x2 as

ẍi +α(x2
i +κ −γ −1)ẋi +ω2xi =0 .

This dynamic equation has a stable limit cycle if γ >κ −1,
or a stable equilibrium point at origin otherwise. A simi-
lar result can be derived for γ < 0, where x1 and x2 reach
antisynchrony if γ <1−κ or tend to zero otherwise.

Also note that:

– Setting κ =1, x1 and x2 will keep oscillating for all γ �=0.
Oscillator death as a transition state between synchro-
nized and antisynchronized solutions does not exist ex-
cept when γ =0.

– In general, a positive value of γ represents a force to
drive synchrony, while a negative value represents a
force to drive antisynchrony. Hence it is easy to under-
stand the behavior of system (7) where the coupling
to the first oscillator tries to synchronize but the cou-
pling to the second tries to antisynchronize, with equal
strength. A neutral result is thus obtained. In fact, if we
look at a coupled system with nonsymmetric couplings{
ẍ1 +α(x2

1 −1)ẋ1 +ω2x1 =α (γ1ẋ2 −κ1ẋ1)

ẍ2 +α(x2
2 −1)ẋ2 +ω2x2 =α (γ2ẋ1 −κ2ẋ2)

,

the condition for oscillator death is

κ1 >1 , κ2 >1 , (κ1 −1)(κ2 −1)≥ (γ1 +γ2)
2/4 .

– If we add extra diffusion coupling associated to the
states x1 and x2 to system (8){

ẍ1 +α(x2
1 −1)ẋ1 +ω2x1=α (γ ẋ2 −κẋ1)+α (γ̄ x2 − κ̄x1)

ẍ2 +α(x2
2 −1)ẋ2 +ω2x2=α(γ ẋ1 −κẋ2)+α (γ̄ x1 − κ̄x2)

,

where κ and κ̄ are both positive, the main result is pre-
served as long as γ γ̄ >0. If the condition | γ |>1−κ is
satisfied, x1 converges to x2 asymptotically for all γ ≥0
while x1 converges to −x2 asymptotically for all γ ≤0.
The second coupling term does not change the quali-
tative results (but only the amplitude and frequency of
the final behavior) as long as

ω2 +α( κ̄ −| γ̄ | )>0 .

These results can be regarded as a global generalization
of the dynamics analysis of two identical Van der Pol
oscillators in Rand and Holmes (1980) and Storti and
Rand (1982).
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Fig. 1. Networks with different symmetric structures (n=4)

4 Nonlinear networked systems

Most coupled oscillators in the natural world are or-
ganized in large networks, such as pacemaker cells in
heart, neural networks in brain, fireflies with synchronized
flashes, crickets with synchronized chirping, etc. (Strogatz
and Stewart 1993; Strogatz 2003). System (4) represents
such an instance with a chain structure. There are many
other possible structures such as, e.g., the three symmetric
ones illustrated in Fig. 1.

In this section, we show that partial contraction anal-
ysis can be used to study synchronization in networks of
nonlinear dynamic systems of various structures and arbi-
trary size. Coupling forces can be nonlinear as well.

4.1 Networks with all-to-all symmetry

Consider first a network with all-to-all symmetry, that is,
with each element coupled to all the others. Such a net-
work can be analyzed using an immediate extension of
Theorem 3.

Theorem 5 Consider n coupled systems. If a contracting
function h(xi , t) exists such that

ẋ1 −h(x1, t)=· · ·= ẋn −h(xn, t) ,

then all the systems will synchronize exponentially regard-
less of the initial conditions.

For instance, for identical oscillators coupled with
diffusion-type force

ẋi = f(xi , t) +
n∑

j=1

( u(xj )−u(xi )), i =1,2, . . . , n , (9)

contraction of f −nu guarantees synchronization of the
whole network.

Mirollo and Strogatz (1990) study an all-to-all network
of pulse-coupled integrate-and-fire oscillators and derive
a similar result on global synchronization.

4.2 Networks with less symmetry

Besides its direct application to all-to-all networks, The-
orem 5 may also be used to study networks with less
symmetry.

Example 4.1 Consider an n = 4 network with two-way-
ring symmetry (as illustrated in Fig. 1b):

ẋi = f(xi , t)+ (u(xi−1)−u(xi ))

+(u(xi+1)−u(xi )), i =1,2,3,4 ,

where the subscripts i − 1 and i + 1 are computed circu-
larly. Combining these four oscillators into two groups
(x1,x2) and (x3,x4), we find[

ẋ1 − f(x1, t)+2u(x1)
ẋ2 − f(x2, t)+2u(x2)

]
=
[

ẋ3 − f(x3, t)+2u(x3)
ẋ4 − f(x4, t)+2u(x4)

]

=
[

u(x2)+u(x4)
u(x1)+u(x3)

]
.

Thus, if the function f − 2u is contracting, (x1,x2) con-
verges to (x3,x4) exponentially, and hence{

ẋ1 − f(x1, t)+2u(x1)→ 2u(x2)

ẋ2 − f(x2, t)+2u(x2)→ 2u(x1)
,

so that in turn x1 converges to x2 exponentially if the func-
tion f −4u is contracting. The four oscillators then reach
synchrony exponentially regardless of the initial condi-
tions. ��

An extended partial contraction analysis can be used
to study the example below, the idea of which will be gen-
eralized in the following section.

Definition 1 Consider n square matrices Ki of identical
dimensions and a square symmetric matrix K. Define

In
Ki

=




K1 0 · · · 0
0 K2 · · · 0
...

...
. . .

...
0 0 · · · Kn


 Un

K =




K K · · · K
K K · · · K
...

...
. . .

...
K K · · · K




n×n

.

One has In
Ki

>0 if and only if Ki >0, ∀i, and Un
K ≥0 if and

only if K ≥0 .

Example 4.2 Consider an n = 4 network with one-way-
ring symmetry (as illustrated in Fig. 1a):

ẋi = f(xi , t)+K(xi−1 −xi ), i =1,2,3,4 ,

where K =KT ≥0 and the subscripts are calculated circu-
larly. This system is equivalent to

ẋi = f(xi , t)−K(2xi +xi+1 +xi+2)+K
4∑

j=1

xj .

Construct the auxiliary system

ẏi = f(yi , t)−K(2yi +yi+1 +yi+2)

+K
4∑

j=1

xj (t), i =1,2,3,4 .

The auxiliary system admits the particular solution y1 =
y2 =y3 =y4 =y∞ , with

ẏ∞ = f(y∞, t)−4 Ky∞ +K
4∑

j=1

xj (t) . (10)

To apply Theorem 1 to the specific property y1 =y2 =y3 =
y4 and prove that all xi synchronize regardless of the ini-
tial conditions, there only remains to study the Jacobian
matrix

J =




J1 −2K −K −K 0
0 J2 −2K −K −K

−K 0 J3 −2K −K
−K −K 0 J4 −2K


 ,
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where Ji = ∂f
∂y (yi , t). The symmetric part of the Jacobian

is

Js = I4
(Jis−K) −

1
2

U4
K − 1

2
J+, where J+ =




K 0 K 0
0 K 0 K
K 0 K 0
0 K 0 K


 .

We know that if ∀i, Jis − K < 0, then I4
(Jis−K) < 0, and if

K ≥ 0, then U4
K ≥ 0 and J+ ≥ 0. If both conditions are

satisfied, the Jacobian J is negative definite and synchro-
nization occurs.

Note that dynamics (10) is then contracting as well.
This is not surprising since y1 =y2 =y3 =y4 defines both an
invariant set and a linear constraint, and linear constraints
preserve contraction (Lohmiller and Slotine 1998). ��

4.3 Networks with general structure

Let us now move to networked systems under a very gen-
eral coupling structure. For notational simplicity, we first
assume that coupling forces are linear diffusive with gains
Kij (associated with coupling from node i to j ) positive
definite, i.e., (Kij )s =Kijs >0. We further assume that cou-
pling links are bidirectional and symmetric in different
directions, i.e., Kij = Kji . All these assumptions can be
relaxed, as we will show later.

Consider a network containing n identical elements

ẋi = f(xi , t)+
∑
j∈Ni

Kji(xj −xi ), i =1, . . . , n , (11)

where Ni denotes the set of indices of the active links of
element i. It is equivalent to

ẋi = f(xi , t)+
∑
j∈Ni

Kji(xj −xi )−K0

n∑
j=1

xj +K0

n∑
j=1

xj ,

where K0 is chosen to be a constant symmetric positive
definite matrix (its function will be discussed later). Again,
construct an auxiliary system

ẏi = f(yi , t)+
∑
j∈Ni

Kji (yj −yi )

−K0

n∑
j=1

yj +K0

n∑
j=1

xj (t) (12)

that has a particular solution y1 =· · ·=yn =y∞ with

ẏ∞ = f(y∞, t)−n K0 y∞ +K0

n∑
j=1

xj (t) .

According to Theorem 1, if the auxiliary system (12) is
contracting, then all system trajectories will verify the
independent property x1 =· · ·=xn exponentially.

Next, we compute Js , the symmetric part of the
Jacobian matrix of the auxiliary system.

Definition 2 Consider a square symmetric matrix K and
define

Tn
K =




. . .
...

...
· · · K · · · −K · · ·

...
. . .

...
· · · −K · · · K · · ·

...
...

. . .




n×n

,

where all the elements in Tn
K are zero except those displayed

above at the four intersections of the ith and j th rows with
the ith and j th columns. One has Tn

K ≥0 if K ≥0.
Letting N =∪n

i=1Ni denote the set of active links in the
network and define LK =

∑
i,j∈N

Tn
Kijs

.

If we view the network as a graph, LK is the symmetric
part of the weighted Laplacian matrix (Godsil and Royle
2001). The standard Laplacian matrix is denoted as L. We
can write

Js = In
Jis

− LK − Un
K0

,

where Jis = ( ∂f
∂y (yi , t))s .

Lemma 1 Let

Jr =−LK −Un
K0

.

If K0 > 0 ,Kij > 0, ∀(i, j) ∈ N , and the network is con-
nected, then Jr <0.

Proof Note that each of the two parts in Jr is only neg-
ative semidefinite. Given an arbitrary nonzero vector v =
[v1, . . . , vn]T, one has

vTJrv = −
∑

(i,j)∈N
(vi − vj )

TKijs (vi − vj )

−(

n∑
i=1

vi )
T K0(

n∑
i=1

vi )<0

because the condition that the network be connected guar-
antees that

vTJrv =0 if and only if v1 =· · ·= vn =0 .

Furthermore, the largest eigenvalue of Jr can be calculated
as

λmax(Jr )= max
||v||=1

vTJrv = max
||v||=1

(−vTLKv − vTUn
K0

v) .

Since −vTUn
K0

v keeps decreasing as K0 increases except on
the set

∑n
i=1 vi =0, we can choose K0 large enough and get

λmax(Jr )=− min
||v||=1∑n
i=1 vi=0

vTLKv =−λm+1(LK) ,

according to the Courant–Fischer Theorem (Horn and
Johnson 1985). Note that K0 is a virtual quantity used to
make Jr <0 in the partial contracting analysis, and thus it
cannot affect the real system’s synchronization rate. Here
the eigenvalues are arranged in an increasing order, and
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λ1(LK) = · · · = λm(LK) = 0, where m is the dimension of
each individual element.

Note that in the particular case where m = 1 and all
Kij =1, eigenvalue λ2(LK)=λ2(L) is a fundamental quan-
tity in graph theory called algebraic connectivity (Fiedler
1973), which is equal to zero if and only if the graph is not
connected. ��

The above results imply immediately

Theorem 6 Regardless of initial conditions, all the elements
within a generally coupled network (11) will reach syn-
chrony or group agreement exponentially if

– the network is connected,
– λmax(Jis) is upper bounded,
– the couplings are strong enough.

Specifically, the auxiliary system (12) is contracting if

λm+1(LK)>max
i

λmax(Jis), uniformly. (13)

Remarks

– The conditions given in Theorem 6 to guarantee syn-
chronization represent requirements both on the indi-
vidual systems’ internal dynamics and the network’s
geometric structure. A lower bound on the correspond-
ing threshold of the coupling strength can be computed
through eigenvalue analysis for a specific network.

– Theorem 6 can also be used to find the threshold for
symmetric subgroups in a network to reach synchrony,
as in Example 4.1.

– Partial contraction analysis does not add any restric-
tion on the uncoupled dynamics f(x, t) other than
requiring λmax(Jis) to be upper bounded, which is eas-
ily satisfied if, for instance, individual elements are
oscillators. As an example, λmax(Jis)=α for the Van
der Pol oscillator. The dynamics f may have vari-
ous qualitative properties, and it can be an oscillator,
a contracting system, zero, or even a chaotic system
(Pecora and Carroll 1990; Slotine 2003; Strogatz 2003).
For a group of contracting systems, if �= I, the con-
traction property of the overall group will be enhanced
by the diffusion couplings, and all the coupled sys-
tems are expected to converge to a common equilib-
rium point exponentially if f is autonomous. If � �= I,
however, the situation is more complicated, and a trans-
formation must be used before applying contraction
analysis. The coupling gain may lose positivity through
the transformation, and the stability of the equilib-
rium point may be destroyed with strong enough cou-
pling strengths. This kind of bifurcation is interest-
ing especially if the otherwise silent systems behave as
oscillators after coupling, a phenomenon of Smale’s
cells (Loewenstein and Sompolinsky 2002; Smale 1976;
Turing 1952). A simple example when n=2 is discussed
in Sect. 3.2.2.

– The definition of the “neighbor” sets Ni is quite flexi-
ble. While it may be based simply on position proxim-
ity (neighbors within a certain distance of each node),
it can be chosen to reflect many other factors. Gestalt

psychology (Rock and Palmer 1990), for instance, sug-
gests that in human visual perception, grouping oc-
curs not only by proximity, but also by similarity, clo-
sure, continuity, common region, and connectedness.
The coupling strengths can also be specified flexibly.
For instance, using Schoenberg/Micchelli’s theorems
on positive definite functions (Micchelli 1986), they
can be chosen as smooth functions based on sums of
Gaussians.

– Partial contraction theory is derived from contraction
theory. Thus many results from Lohmiller and Slotine
(1998) and Slotine and Lohmiller (2001) apply directly.
Consider, for instance, a coupled network with con-
straints

ẋi = f(xi , t)+ni +
∑
j∈Ni

Kji (xj −xi ) , i =1, . . . , n,

where ni represents a superimposed flow normal to the
constraint manifold and has the same form in each sys-
tem. Construct the corresponding auxiliary system

ẏi = f(yi , t)+ni +
∑
j∈Ni

Kji (yj −yi )

−K0

n∑
j=1

yj +K0

n∑
j=1

xj . (14)

Using (Lohmiller and Slotine 1998), contraction of the
unconstrained flow (12) implies local contraction of the
constrained flow (14), which means group agreement
can be achieved for a constrained network in a finite
region that can be computed explicitly. In same cases,
the introduction of the constraint combined with the
specific property of the particular solution implies that
the constrained original system is actually contracting.
Similarly, because the auxiliary system is contracting,
robustness results in Lohmiller and Slotine (1998) apply
directly.

4.4 Extensions

Besides the properties discussed above, let us make a few
more extensions to Theorem 6 and relax assumptions
made earlier.

4.4.1 Nonlinear couplings. The analysis carries on straight-
forwardly to nonlinear couplings. For instance,

ẋi = f(xi , t)+
∑
j∈Ni

uji(xj ,xi ,x, t) ,

where the couplings are of the form

uji =uji(xj −xi ,x, t)

with uji(0,x, t)=0 ∀i, j,x, t . The whole proof is the same
except that we define

Kji = ∂uji ( xj −xi , x, t )

∂(xj −xi )
>0, uniformly

and assume Kji =Kij .
For instance, one may have

uji = ( Cji(t)+ Bji(t) ‖xj −xi‖ ) (xj −xi )
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with Cji =Cij >0 uniformly and Bji =Bij ≥0, in which
case we can construct a simplifical auxiliary system as

ẏi = f(yi , t)+
∑
j∈Ni

(Cji(t)+ Bji(t) ‖xj (t)−xi (t)‖)

×(yj −yi )−K0

n∑
j=1

yj +K0

n∑
j=1

xj (t) .

Note that if the network is all-to-all coupled, the cou-
pling forces can be even more general, as we discussed in
Sect. 4.1.

4.4.2 One-way couplings. The bidirectional coupling
assumption on each link is not always necessary. Consider
a coupled network with one-way-ring structure and linear
diffusion coupling force

ẋi = f(xi , t)+K(xi−1 −xi ), i =1, . . . , n ,

where by convention i −1=n when i =1. We assume that
the coupling gain K=KT >0 is identical to all links. Hence,

Jr =−1
2

LK −Un
K0

is negative definite with

LK =
n∑

i=1

Tn
K(i, i +1) .

Since

λm+1

(
1
2

n∑
i=1

Tn
K(i, i +1)

)

= 1
2
λmin(K)λ2

(
n∑

i=1

Tn
1(i, i +1)

)

=λmin(K)(1− cos
2π

n
) ,

the threshold to reach synchrony exponentially is

λmin(K)(1− cos
2π

n
)>max

i
λmax(Jis), uniformly. (15)

A special case was given in Example 4.2 with n=4.
Thus, Theorem 6 can be extended to networks whose

links are either bidirectional with Kji = Kij or unidirec-
tional but formed as rings with KT =K (where K is identi-
cal within the same ring but may differ between different
rings). Synchronized groups with increasing complexity
can be generated through accumulation of smaller groups.

Throughout the remainder of this paper, all results on
bidirectionally coupled networks will apply to unidirec-
tional rings as well.

4.4.3 Positive semidefinite couplings. Theorem 6 requires
definite coupling gains. If the Kij are only positive semi-
definite, additional conditions must be added to the
uncoupled system dynamics to guarantee globally stable
synchronization.

Without loss of generality, we assume

Kijs =
[

K̄ijs 0
0 0

]
,

where K̄ijs is positive definite and has a common dimen-
sion for all links. Thus, we can divide the uncoupled
dynamics Jis into the form

Jis =
[

J11s J12

JT
12 J22s

]
i

,

with each component having the same dimension as that
of the corresponding one in Kijs . A sufficient condition to
guarantee globally stable synchronization behavior in the
region beyond a coupling strength threshold is that ∀i, J22s

is contracting and both λmax(J11s) and σmax(J12) are upper
bounded.

Indeed, given an arbitrary vector v = (v1, . . . , vn), one
has

vTJsv =
n∑

i=1

vT
i Jisvi + vTJrv

≤
n∑

i=1

vT
i

[
0 J12

JT
12 J22s

]
i

vi +
n∑

i=1

vT
i

[
λI 0
0 0

]
vi

=
n∑

i=1

vT
i

[
λI J12

JT
12 J22s

]
i

vi ,

where

λ = λmax(J̄r ) + max
i

λmax(J11s)

and J̄r is a new matrix by ruling out the rows and columns
containing only zero in Jr (we set K0 to be positive semi-
definite and have the same form as Kijs) and hence is neg-
ative definite. From feedback combination condition (2),
we know that a negative λ with a large enough absolute
value, a contracting J22s , and a bounded σ(J12) for all i
guarantee the contraction of Js . In fact, global contraction
of J22s is a very important necessary condition without
which the synchronization cannot occur in an unbounded
parameter region. Pecora first pointed this out (Barahona
and Pecora 2002; Pecora and Carroll 1998; Pecora 1998)
using a new concept called desynchronizing bifurcation.
Recently, Pogromsky et al. (2002) independently studied a
similar phenomenon.

Example 4.3 Consider a network composed of identical
Van der Pol oscillators in a general structure. The dynam-
ics of the ith oscillator is given as

ẍi +α(x2
i −1)ẋi +ω2xi =

∑
j∈Ni

ακ(ẋj − ẋi ) .

Using partial contraction analysis, we have

Js = In
Jis

+Jr = In
Jis

−LK −Un
K0

with

Jis =
[

α(1−x2
i ) 0

0 0

]
Kij =Kijs =

[
ακ 0
0 0

]
.

By ruling out the even rows and even columns in Js where
the components are all zero, we get a new result

J̄s = In

J̄is
−LK̄ −Un

K̄0

with

J̄is =α(1−x2
i ), K̄ij = K̄ijs =ακ .
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The condition that J̄s must be negative definite is
1
κ

<λ2(
∑

i,j∈N
Tn

1)=λ2(L) ,

which guarantees simultaneously that Js is negative semi-
definite. Using semicontraction analysis, we know that
synchrony will happen asymptotically.

An important application of coupled nonlinear oscilla-
tors is the modeling of central pattern generators (Collins
and Stewart 1993a,b; Golubitsky et al. 1998, 1999; Golu-
bitsky and Stewart 2002). Consider a two-way-ring neural
network composed of four identical Van der Pol oscilla-
tors as given in Fig. 1b. Assume that the first oscillator is
connected to the left front leg while the third is connected
to the right back one. The system dynamics is given as

ẍi +α(x2
i −1)ẋi +ω2xi = ακ( γ(i−1)i ẋi−1 − ẋi )

+ ακ( γ(i+1)i ẋi+1 − ẋi ) ,

with i =1,2,3,4. With different values of coupling coeffi-
cient γij this model is able to generate rhythmic signals
to drive different quadrupedal gaits. We set γij = γji = 1
if we want oscillators i and j to synchronize while set
γij = γji =−1 if we want them to antisynchronize. Thus,
following the description of animal gaits in Collins and
Stewart 1993a, we are able to realize the pace, trot, bound,
and pronk, the quadrupedal gaits that are highly symmet-
ric and robust with relative phase lags of zero or half a
period. For instance, the pace gait (left/right pairing) is
achieved by setting

γ41 =γ14 =−1, γ21 =γ12 =1,

γ32 =γ23 =−1, γ43 =γ34 =1

and coupling gain κ > 1
2 . The convergence from one gait

to another is global. Once all the γij are set to zero, we get
the stand.

A similar model can be used to study the locomotion
of other numbers of legs. For instance, consider a two-
way-ring network composed of six oscillators. By setting
κ > 1 and all the γij to −1, we are able to generate the
tripod gait, a common hexapodal gait in which the front
and rear legs on one side, and the middle leg on the other,
move together, followed by the remaining three legs half a
period later (Collins and Stewart 1993b). ��
Example 4.4 The FitzHugh–Nagumo (FN) model
(FitzHugh 1961; Nagumo et al. 1962) is a well-known spik-
ing-neuron model. Consider a diffusion-coupled network
with n identical FitzHugh–Nagumo neurons


v̇i = c(vi +wi − 1
3
v3

i + I )+
∑
j∈Ni

kji (vj −vi)

ẇi =− 1
c
(vi −a +bwi) i =1, . . . , n

, (16)

where a, b, c are strictly positive constants. Defining a

transformation matrix �=
[

1 0
0 c

]
, which leaves the cou-

pling gain unchanged, yields the generalized Jacobian of
the uncoupled dynamics

Fi =
[

c(1−v2
i ) 1

−1 − b
c

]
.

Thus the whole network will synchronize exponentially if

λ2(
∑

(i,j)∈N
Tn

kij
)=λ2(LK̄)>c .

Note that the model can be generalized using a linear state
transformation to a dimensionless system (Murray 1993),
with partial contraction analysis yielding a similar result.��

4.5 Algebraic connectivity

For a coupled network with a given structure, both increas-
ing the coupling gain for a link or adding an extra link will
improve the synchronization process. In fact, these two
operations are the same in a general sense if an extra term
−Tn

Kijs
is added to the matrix Js . According to Weyl’s theo-

rem (Horn and Johnson 1985), if square matrices A, B are
Hermitian and the eigenvalues λi(A), λi(B), and λi(A+B)
are arranged in increasing order, for each k = 1, 2, . . . , n,
we have
λk(A)+λ1(B)≤λk(A +B)≤λk(A)+λn(B) ,

which means immediately
λk(Js −Tn

Kijs
)≤λk(Js) ,

since λmax(−Tn
Kijs

)=0.
In fact, connecting each node to more neighbors is an

effective way for large-size networks to lower the synchro-
nization threshold. To see this in more detail, let us assume
that all the links within the network are bidirectional (the
corresponding graph is called a undirected graph) with
identical coupling gain K = KT > 0. Thus, according to
Horn and Johnson (1989), λm+1(LK)=λ2λmin(K), where
λ2 is the algebraic connectivity of the standard Laplacian
matrix. Denote

λ̄= maxi λmax(Jis)

λmin(K)
.

If both the individual element’s uncoupled dynamics and
the coupling gains are fixed, the synchronization condi-
tion (13) can be written as
λ2 >λ̄, uniformly .

We can further transform this condition to those based
on more explicit properties in geometry. Given a graph G
of order n, there exist lower bounds on its diameter2 d(G)
and its mean distance3 ρ̄(G) (Mohar 1991):

d(G)≥ 4
nλ2

,

(n−1)ρ̄(G)≥ 2
λ2

+ n−2
2

(these bounds are most informative when λ2 is small),
which in turn gives us lower bounds on algebraic connec-
tivity

λ2 ≥ 4
n ·d(G)

,

λ2 ≥ 2

(n−1)ρ̄(G) − n−2
2

.

2 Maximum number of links between two distinct vertices (Godsil
and Royle 2001)

3 Average number of links between distinct vertices (Mohar 1991)
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Fig. 2. Comparison of a chain network and a ring

Thus, a sufficient condition to guarantee exponential net-
work synchronization is

d(G) <
4

nλ̄
or

ρ̄(G) <
2

λ̄(n−1)
+ n−2

2(n−1)
.

These results quantify the fact that different coupling
links or nodes can make different contributions to syn-
chronization because they play different roles in network
structure. In this sense, links between distant nodes con-
tribute more than those between close neighbors, a fact
also central to Small World models (Watts and Strogatz
1998).

Example 4.5 Kopell and Ermentrout (1986) show that
closed rings of oscillators will reliably synchronize with
nearest-neighbor couplings, while open chains require
nearest and next-nearest-neighbor couplings. This result
can be explained by assuming all gains are identical and
expressing the synchronization condition (13) as

λmin(K)>
maxi λmax(Jis)

λ2
, uniformly .

Assuming an extremely large n, for a graph with a two-
way-chain structure

λ2 =2 (1− cos(
π

n
))≈2 (

π

n
)2 ,

while for a graph with a two-way-ring structure

λ2 = 2 ( 1− cos(
2π

n
) )≈8 (

π

n
)2 .

As illustrated in Fig. 2, although the number of links only
differs by one in these two cases, the effort to synchronize
an open chain network is four times that of a closed one.��

Example 4.6 Consider a ring network, a star network, and
an all-to-all network (Fig. 3) as network size n tends to ∞.
For the ring network, the coupling strength threshold for
synchronization tends to infinity. For the star network it
only needs to be of order 1, and for the all-to-all network
it actually tends to 0.

Thus, predictably, it is much easier to synchronize the
star network than the ring. This is because the central node
in the star network performs a global role, which keeps
the graph diameter constant no matter how big the net-
work. Such a starlike structure is common. The Internet,
for instance, is composed of many connected subnetworks
with star structures. ��

This result is closely related to the Small World prob-
lem. Strogatz and Watts (Strogatz 2001; Watts and Stro-
gatz 1998; Watts 1999) showed that the average distance

Fig. 3. Comparison of three different kinds of networks

between nodes decreases with an increasing probability
of adding short paths to each node. They also conjec-
tured that synchronizability is enhanced if the node is
endowed with dynamics, which Barahona and Pecora
showed numerically (Barahona and Pecora 2002).

4.6 Fast inhibition

The dynamics of a large network of synchronized elements
can be completely transformed by the addition of a single
inhibitory coupling link. Start, for instance, with the syn-
chronized network (11) and add a single inhibitory link
between two arbitrary elements a and b:

ẋa = f(xa, t)+
∑
j∈Na

Kja (xj −xa)+K (−xb −xa) ,

ẋb = f(xb, t)+
∑
j∈Nb

Kjb (xj −xb)+K (−xa −xb) .

The symmetric part of the Jacobian matrix is

Js = In
Jis

−LK − T̄n
K ,

where T̄n
K is composed of zeroes except for four identical

blocks:

T̄n
K =




. . .
...

...
· · · K · · · K · · ·

...
. . .

...
· · · K · · · K · · ·

...
...

. . .




n×n

.

The matrix J∗
r =−LK − T̄n

K is negative definite, since ∀v �=0

vTJ∗
r v = −

∑
(i,j)∈N

(vi − vj )
TKijs(vi − vj )

−(va + vb)
TK(va + vb)<0 .

Thus, the network is contracting for strong enough cou-
pling strengths. Hence, the n elements will be inhibited. If
the function f is autonomous, they will tend to equilib-
rium points. If the coupling strengths are not very strong,
the inhibitory link will still have the ability to destroy the
synchrony and may then generate a desynchronized spik-
ing sequence. Adding more inhibitory couplings preserves
the result.

Such inhibition properties may be useful in pattern
recognition to achieve rapid desynchronization between
different objects. They may also be used as simplified mod-
els of minimal mechanisms for turning off unwanted syn-
chronization, as, e.g., in epileptic seizures or oscillations in
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Internet traffic. In such applications, small and localized
inhibition may also allow one to destroy unwanted syn-
chronization while only introducing a small disturbance
to the nominal behavior of the system. Cascades of inhibi-
tion are common in the brain, in a way perhaps reminiscent
of NAND-based logic.

Note that the same effect can be achieved if we add self-
inhibition to one or more arbitrary elements. For instance,

ẋa = f(xa, t)+
∑
j∈Na

Kja(xj −xa)−Kxa .

In this case, T̄n
K is composed of zeroes except for one diag-

onal block:

T̄n
K =




. . . 0
K

0
. . .




n×n

.

4.7 Switching networks

Closely related to oscillator synchronization, collective
behavior and group cooperation have also been the subject
of extensive recent research (Bruckstein et al. 1997; Jad-
babaie et al. 2003; Langbort and D’Andrea 2004; Leonard
and Fiorelli 2001; Lin et al. 2004; Olfati-Saber and Mur-
ray 2003; Reynolds 1987; Seiler et al. 2003; Slotine and
Wang 2004; Tanner 2003a,b; Vicsek 1995). A fundamental
understanding of aggregate motions in the natural world,
such as bird flocks, fish schools, animal herds, or bee
swarms, for instance, would greatly help in achieving de-
sired collective behaviors of artificial multiagent systems,
such as vehicles with distributed cooperative control rules.
Since such networks are composed of moving units and
each moving unit can only couple to its current neighbors,
the network structure may change abruptly and asynchro-
nously.

Consider such a network:

ẋi = f(xi , t)+
∑

j∈Ni (t)

Kji(xj −xi ), i =1, . . . , n ,

where Ni (t) denotes the set of the active links associated
with element i at time t . Apply partial contraction analysis
to each time interval during which the network structure
N (t) is fixed. If

λm+1(LK)>max
i

λmax(Jis), uniformly ∀N (t) , (17)

the auxiliary system (12) is always contracting, since δyTδy
with δy = [δy1, . . . , δyn]T is continuous in time and up-
per bounded by a vanishing exponential (though its time-
derivative can be discontinuous at discrete instants). Since
the particular solution of the auxiliary system in each
time interval is y1 = · · · = yn = y∞, these n elements will
reach synchrony exponentially as they tend to y1 =· · ·=yn,
which is a constant region in the state space. The threshold
phenomenon described by inequality (17) is also reminis-
cent of phase transitions in physics (Pikovsky et al. 2003)
and of Bose–Einstein condensation (Ketterle 2002).

Example 4.7 Consider a simplified model of schooling or
flocking in continuous time with f =0:

ẋi =
∑

j∈Ni (t)

Kji (xj −xi ), i =1, . . . , n , (18)

where xi ∈ R
m denotes the states needed to reach agree-

ments such as a vehicle’s heading, attitude, velocity, etc.
Ni (t) is defined, for instance, as the set of the nearest neigh-
bors within a certain distance around element i at current
time t . The coupling gain Kji satisfies those assumptions
proposed in Sects. 4.3 and 4.4, i.e., the links are either bidi-
rectional or unidirectional formed in rings. Since Jis = 0
here, condition (17) is satisfied if only the network is con-
nected. Therefore, ∀i, xi converges exponentially to a par-
ticular solution, which in this case is a constant value
x̄ = 1

n

∑n
i=1 xi (0). In fact, the network (18) need not be

connected for any t ≥0. A generalized condition can be de-
rived (Slotine and Wang 2004) that is the same as that ob-
tained by Jadbabaie et al. (2003) for a discrete-time model.

Note that in the case of heading agreement based on
spatial proximity, the issue of chattering is immaterial
since switching cannot occur infinitely fast, while in the
general case it can be avoided simply by using smooth
transitions in time or space.

Finally, note that, transposed to a neural network con-
text, the overall convergence to x̄ can be interpreted as
implementing a type of population coding. ��

4.8 Leader-followers network

In a network composed of peers, the phase of the collective
behavior is hard to predict, since it depends on the initial
conditions of all the coupled elements. To let the whole net-
work converge to a specific trajectory, a “leader” can be
added (Jadbabaie et al. 2003; Leonard and Fiorelli 2001).

Consider the dynamics of a coupled network:

ẋ0 = f(x0, t),

ẋi = f(xi , t)+
∑
j∈Ni

Kji (xj −xi )

+γi K0i (x0 −xi ), i =1, . . . , n , (19)

where x0 is the state of the leader, whose dynamics is inde-
pendent, and xi the state of the ith follower. γi is equal to
either 0 or 1 and represents the connection from the leader
to the followers. Ni denotes the set of peer-neighbors of
element i, i.e., it does not include the possible link from x0
to xi .

Theorem 7 Regardless of initial conditions, the states of all
the followers within a generally coupled network (19) will
converge exponentially to the state of the leader if

λmin(LK + In
γiK0is

)>max
i

λmax(Jis), uniformly. (20)

Proof Since the dynamics of x0 is independent, we can
treat it as an external input to the rest of the network,
whose Jacobian matrix has the symmetric part

Js = In
Jis

−LK − In
γiK0is

.
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The matrix J∗
r =−LK −In

γiK0is
is negative definite if the aug-

mented network with n+1 elements is connected. In fact,
∀v �=0,

vTJ∗
r v = −

∑
(i,j)∈N

(vi − vj )
TKijs(vi − vj )

−
n∑

i=1

γi(vT
i K0is vi )<0 .

Thus the system [x1, . . . ,xn]T is contracting if the cou-
pling strengths are so strong that the condition (20) is true.
Therefore, all solutions will converge to the particular one

x1 =· · ·=xn =x0

exponentially regardless of the initial conditions. This re-
sult can be viewed as a generalization of Theorem 2. ��

Remarks

– For nonnegative max
i

λmax(Jis), a necessary condition

to realize leader-following is that the whole network of
n+1 elements is connected. Thus either the n followers
x1, . . . ,xn could be connected together, or there could
be isolated subgroups all connected to the leader. Like
the result in the previous section, the network structure
of a leader-followers group does not have to be fixed
during the whole time, either.

– A comparison of conditions (13) and (20) shows that,
predictably, the existence of an additional leader does
not always help the followers’ network to reach agree-
ment. But it does if

λmin(LK + In
γiK0is

)>λm+1(LK) .

Example 4.8 Consider, for instance, the case where the
leader has identical connections to all other elements,
∀i, K0i =kI, k >0. Then

λmin(LK + In
γiK0is

)= min
||v||=1

vT( LK + In
kI )v =k .

This means the connections between the leader and the
followers do promote the convergence within the follow-
ers’ network if λm+1(LK)<k, which is more likely to occur
in a network with less connectivity. ��
– The connectivity of the followers’ network helps the fol-

lowing process, which can be seen by applying Weyl’s
theorem (Horn and Johnson 1985):

λi( LK + In
γiK0is

)≥λi(In
γiK0is

), i =1, . . . ,mn .

– The leader does not have to be a single element but can
be a group of leading elements. In addition, in some
cases it may receive feedback from the followers as well.
This is the case in synchronization propagation, where
the node density is unevenly distributed throughout the
network. Since the synchronization rate depends on
network connectivity, a high-density region will syn-
chronize very quickly despite disturbances from other
parts of the network. The inputs from these leaders then
facilitate synchronization in low-density regions, where

the elements may not be able to synchronize by them-
selves. A simple simulation was given by Slotine and
Wang (2004), and Yen et al. (1999) observed a similar
phenomenon by setting different interior connection
weights inside different subgroups. Note that the lead-
ers group here is very similar to the concept of core
group in infectious disease dynamics (May et al. 2001),
which is a group of the most active individuals. A small
change in the core group will make a big difference
in whether or not an epidemic can occur in the whole
population.

– Synchronization can be made to propagate from the
center outward in a more active way, for instance,
through diffusion of a chemical produced by leaders
or high-level elements and having the ability to expand
the communication channels it passes through, i.e., to
increase the gains through diffusion. Such a mecha-
nism represents a hierarchical combination with gain
dynamics. By extending the state, the analysis tools pro-
vided here can apply more generally to combinations
where the gain dynamics are coupled to each other (with
arbitrary connectivity) and to the xi .

– Different leaders xj

0 of arbitrary dynamics can define
the different primitives that can be combined. Contrac-
tion of the followers’ dynamics (i =1, . . ., n)

ẋi = f(xi , t)+
∑
j∈Ni

Kji(xj −xi )

+
∑

j

αj (t)γ
j

i Kj

0i (x
j

0 −xi )

is preserved if
∑

j αj (t)≥1,∀t ≥0.
– Besides its dubious moral implications, Theorem 7 also

means that it is easy to detract a group from its nom-
inal behavior by introducing a “covert” element, with
possible applications to group control games, ethology,
and animal and plant mimicry.

– Having a leader in a moving formation may yield
other advantages, such as energy saving in aerodynam-
ics (Cutts and Speakman 1994; Seiler et al. 2003).

5 Concluding remarks

We present a general method to analyze the dynamics
of coupled nonlinear oscillators. Compared to previous
studies (most of which were based on linearized models
for coupled networks with limited size or particular struc-
ture), the results here are exact and global. The method
can be used to study coupled networks with various struc-
tures and arbitrary size. An explicit synchronization con-
dition is given for a generalized distributed network with
diffusive couplings. The effect of a network’s geometric
property on its synchronization rate is discussed. Synchro-
nization conditions for switching networks and for leader-
followers networks are also provided. In fact, the results
are not just limited to coupled oscillators but apply to any
coupled identical dynamic systems.

We introduce the concept of partial contraction, which
investigates stability with respect to a specific behavior or
property and therefore can be very powerful for analyzing
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large-scale systems. Based on contraction and/or partial
contraction properties, synchronization analysis is greatly
simplified by isolating the desired convergence behavior
from the overall system dynamics. Furthermore, because
it is virtual, the auxiliary, meta system y can actually be
centralized. Although this paper focuses mainly on iden-
tical properties of subsystem states, future applications
of partial contraction to synchronization should investi-
gate convergence to more general properties, such as phase
locking in locomotion systems. The main limitation of the
method is that the construction of the auxiliary system
itself is not systematic.

Our current work includes the analysis of time-delayed
communications in coupled networks and of global con-
vergence through local adaptation in networks of dispa-
rate dynamic elements.

Partial contraction analysis could also be applied in
the context of discrete-time systems, hybrid systems, or
switching systems. It could allow one to study, for in-
stance, the synchronization of pulse-coupled neurons in
a distributed network, a widely used model in computa-
tional neuroscience that still lacks a complete theoretical
explanation.

Finally, the results presented in this paper could be ex-
tended to study systems described by nonlinear partial
differential equations such as reaction-diffusion equations
and to the case where connections occur stochastically.
The principle of a virtual centralized system may also have
applications in quantum physics.
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Appendix: Driven damped Van der Pol oscillator

Consider the second-order system

ẍ + (β +αx2)ẋ +ω2x =u(t) (21)

driven by an external input u(t), where α, β, ω are strictly
positive constants. Introducing a new variable y, this sys-
tem can be written{
ẋ =ωy − α

3 x3 −βx

ẏ =−ωx + u(t)

ω

.

The corresponding Jacobian matrix

F =
[−(β +αx2) ω

−ω 0

]

is negative semidefinite (Combescot and Slotine 2000).
Therefore,

d
dt

(δzTδz)=2δzTFδz ≤0 ,

where δz = [δx, δy]T is the generalized virtual displace-
ment. Thus δzT δz tends to a lower limit asymptotically.
Now check its higher-order Taylor expansion:

if δx �=0,

δzTδz(t +dt)−δzTδz(t)=−2 (β +αx2)(δx)2dt +O((dt)2),

while if δx =0,

δzTδz(t +dt)δzTδz(t)

=−4 (β +αx2)(δẋ)2 (dt)3

3!
+O((dt)4) .

So the fact that δzTδz tends to a lower limit implies that
δx and δẋ both tend to 0. System (21) is called semicon-
tracting, and for any external input all its solutions con-
verge asymptotically to a single trajectory, independently
of the initial conditions. Note that if β < 0 and u(t)= 0,
system (21) has a unique, stable limit cycle.
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