
1536 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 51, NO. 9, SEPTEMBER 2006

Due to the restrictions on 
 and �, imposed in Definition 1,
(x�)
�1 = jx�j
�1 and (x�)��1 = jx�j��1. Thus, dividing (32) by
� jx�j
�1 and rearranging

�(1� 
) > �(�� 1)jx�j��
 :

If � > 1, the condition for stable 2-period can thus be derived to be

�(1� 
)

�(�� 1)
> jx�j��
 :

In case � � 1; �(� � 1)jx�j��
 < 0 for all x� and �(1 � 
) > 0
for all x�. Thus, in case of � � 1, there is no extra condition other than
(19) for existence of stable 2-period orbits.
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Compositional Contraction Analysis of
Resetting Hybrid Systems

Khalid El Rifai and Jean-Jacques E. Slotine

Abstract—This note develops sufficient conditions for exponential con-
vergence of resetting hybrid nonlinear dynamical systems. Using nonlinear
contraction theory, the analysis first develops a unified formulation of con-
tinuous-time and discrete-time nonlinear dynamics based on a differential
transition matrix. This yields enhanced dwell-time based conditions for sta-
bility of such systems analogous to those existing for switched systems. It
turns out that such dwell-time based conditions, unlike their counterparts
for switched systems, include arbitrary stability conditions as a special case,
and are less conservative and much simpler to verify.

Index Terms—Hybrid systems, impulsive systems, nonlinear contraction
analysis, nonlinear systems, stability, switched systems.

I. INTRODUCTION

In recent years, the analysis and design of hybrid systems has
generated considerable interest in the systems and computer sci-
ence communities. Hybrid systems are characterized by continuous
evolution of process variables, governed by differential equations
or difference equations, and discrete transitions. Hybrid phenomena
include switching between different dynamics due to changes in a
model’s operating conditions or a control action, as well as state resets
at discrete instants of time. Such transitions can be triggered by state
events, time events or memory.

The analysis of stability of hybrid systems has lead to several impor-
tant results in the last few years. For systems with state resets, usually
referred to as impulsive systems, results in [3], [18], and [19] all used a
common Lyapunov function to analyze both continuous-time dynamics
and the discrete-time dynamics of the resetting law. Most of these re-
sults have essentially required standard asymptotic stability conditions
on the continuous-time dynamics along with stability conditions on
the resetting law. Several relaxations for the linear time-invariant (LTI)
case were presented in [18]. An analogue of the latter condition using
contraction analysis for a class of nonlinear resetting systems can be
found in [11]. These results [18], [11] along with the recent work in
[6], which is based on an average dwell-time condition, allow one of
the dynamics to be unstable as long as the other one is stable. However,
unlike results for switched system, most of the results use a single Lya-
punov function to study the stability of the overall system. Achieving
less conservative verifiable dwell-time-based conditions with different
Lyapunov functions is important for hybrid systems since arbitrary sta-
bility conditions, with a common Lyapunov function, are very difficult
to achieve for many systems. Furthermore, most of the results have fo-
cused on autonomous systems and on fixed point solutions. In [18],
some basic results on nonautonomous resetting systems are developed,
whereas, in [5] an analysis of a TCP system with convergence to peri-
odic solutions is presented.

Nonlinear contraction analysis [10]–[12] is a systematic approach
which has been used to characterize uniform exponential convergence
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of nonlinear nonautonomous systems to a single trajectory differen-
tially. This type of analysis is concerned with convergence of trajecto-
ries of a system to each other rather than to a particular attractor, and
is closely related in spirit to the notion of incremental stability. In this
note, a compositional description of contraction of nonlinear systems
is presented using a generalized differential state transition matrix in a
metric. This approach, along with the equivalent variational conditions
based on a vector field’s Jacobian [10], in turn becomes a basis for a
simple unified characterization of the transition and stability of hybrid
resetting nonlinear systems.

The main general contribution of this note is in developing two
simple dwell-time-based conditions for exponential convergence of
nonlinear nonautonomous resetting systems to a particular trajectory.
These conditions apply using either a common, possibly time varying,
metric or two different constant metrics, unlike most existing results,
which use a common Lyapunov function. It turns out that such
dwell-time based conditions include arbitrary stability conditions and
average dwell-time conditions as special cases and are fortunately less
conservative and much simpler to verify then their counterparts for
switched systems since only two subsystems are involved.

The note is organized as follows. Section II presents a brief review
of the variational form of contraction analysis and presents the compo-
sitional description and its key properties of interest. Preliminaries on
contraction of resetting hybrid systems are discussed in Section III-A.
The reminder of Section III gives stability conditions and remarks.
Simple illustrating examples are given in Section IV. Concluding re-
marks are given in Section V.

In this note, �( � ) and �( � ) denote the maximal and minimal eigen-
values of a symmetric matrix, and �( � ) and �( � ) denote the maximal
and minimal singular values of a matrix. Also, 
( � ) � �( � )=�( � ) de-
notes the condition number of a matrix, and k � k the spectral norm of a
matrix. Finally, + refers to the set of non-negative real numbers and
+� to the set of strictly positive integers.

II. NONLINEAR SYSTEMS

A. Nonlinear Contraction Analysis

This section presents the variational formulation of nonlinear
contraction analysis [10], based on properties of the Jacobians of the
vector fields of interest. Continuous-time and discrete-time systems
are considered.

1) Continuous-Time Systems: Consider n-dimensional systems of
the form:

_x(t) = f(x(t); t) (1)

where x 2 n and t 2 +. Noting that if f is continuously differen-
tiable (C1) in x, then so is x in xo, and differentiating (1) with respect
to xo yields the well-known equation of variation

d

dt

@x

@xo
= J(x; t)

@x

@xo
(2)

where J(x; t) = @f(x; t)=@x denotes the Jacobian of the vector field
f(x; t). Consider the differential dx(t) and let �xo � dx(to). Premul-
tiplying by this vector in (2) we get

d

dt
�x(t) = J(x; t)�x(t) (3)

where the differential displacement �x is defined as

�x(t) =
@x(xo; t)

@xo
�xo: (4)

The differential displacement �x satisfies the homogenous linear time-
varying (LTV) differential (3), referred to as the differential dynamics
of (1). Exponential stability of this LTV system implies that k�x(t)k !
0 as t ! +1 exponentially, which implies in turn that the length
of any path between two trajectories shrinks to zero by path integra-
tion; see [10] for more details. This means that all trajectories in the
state–space converge to a single trajectory exponentially. Nonlinear
contraction analysis [10] is concerned with analyzing exponential sta-
bility of system (3), which implies contraction of (1). A brief review of
the main result is given next.

Using the transformation �z = �(x; t)�x, with�(x; t) ann�nma-
trix for which �(x; t)�1 exists and �(x; t)�1 is uniformly bounded,
yields the equivalent system

d

dt
�z(t) = F (x; t)�z(t): (5)

The symmetric positive–definite matrix M(x; t) = �(x; t) �(x; t)

specifies the metric space, where �(x; t) is the Hermitian of �(x; t).
Note that uniform boundedness of �(x; t)�1 has been required for
positive definiteness of M , although boundedness of �(x; t) is not re-
quired. The generalized Jacobian in this metric is given by F (x; t) =

( _�+�J)��1, and Fs = (1=2)(F +F ) denotes the symmetric part
of F . System (1) is said to be contracting if system (3) is exponentially
stable with respect to a metricM(x; t), which yields the following def-
inition.

Definition 1: A continuous-time system given by (1) is said to be
contracting if and only if 9 a metric M(x; t) and � < 0 such that
k�z(t)k � k�z(to)ke

�(t�t ).
Note the analogy between this definition and that of uniform expo-

nential stability of an LTV system, [14]. We now restate the main result
of contraction analysis; see [10] for details and proof. Note that the re-
sults extend to the case x 2 n.

Theorem 1: A continuous-time system given by (1) is contracting
if and only if 9 a metric M(x; t) and � < 0 such that the generalized
Jacobian F (x; t) is uniformly negative definite: �(Fs) � � 8x; t �
to. Then, all trajectories converge exponentially to a single particular
trajectory.

While the above condition is defined globally, local contraction in a
region in the state–space can be similarly defined [10].

2) Discrete-Time Systems: Analogous results hold for discrete-time
systems given by

x(k + 1) = f(x(k); k) (6)

where x 2 n and k 2 . Similarly, defining the differential dis-
placement �x(k) and using the transformation �z(k) = �(x; k)�x(k),
where �(x; k) is an n � n matrix of a uniformly bounded inverse,
which yields the equivalent differential dynamics

�z(k + 1) = F (x; k)�z(k): (7)

The matrixM(x; k) = �(x; k)��(x; k) is referred to as the metric.
Let J(x; k) = @f(x; k)=@x(k) be the Jacobian of the vector field of
interest, then the generalized Jacobian is given as F (x; k) = �(x(k+
1); k + 1)J�(x(k); k)�1. A discrete-time contracting system is de-
fined next.

Definition 2: A discrete-time system given by (6) is said to be
contracting if and only if 9 a metric M(x; k) and � < 1 such that
k�z(k)k � k�z(ko)k�

(k�k ).
The analogue to Theorem 1 for discrete-time systems [10] is given

next, where local contraction is similarly defined.
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Theorem 2: A discrete-time system given by (6) is contracting if
and only if 9 a metric M(x; k) and � < 1 such that the general-
ized Jacobian F (x; k) is uniformly negative definite in discrete-time:
�(F ) � � 8x; k � ko. Then, all trajectories converge exponentially
to a single particular trajectory.

B. Relation to Lyapunov Analysis

The connection between Lyapunov analysis and contraction is seen
from contraction being exponential stability of the LTV differential
system (3) with metric M(x; t). This corresponds to using an equiv-
alent Lyapunov function V (�x; t) = �x M(x; t)�x which yields the
contraction condition F � �I with � < 0 by requiring _V � 2�V .
Note that if f is autonomous and the metric M is restricted to be
constant then Krasovskii’s generalized sufficient condition for global
asymptotic stability [7], [15], [10] is equivalent to contraction of such
systems. However, Krasovskii’s analysis is generalized by the work in
[10] by allowing a metric M(x; t) and by convergence to both equi-
librium and nonequilibrium solutions for nonautonomous systems, see
[10] for details. Conceptually, approaches closely related to contrac-
tion, although not based on differential analysis, can be traced back to
[4] and even to [8].

Noting that when the system (1) is linear �x an x are of equivalent
effect, one can see that for LTV systems contraction and exponential
stability via Lyapunov are equivalent with metric M(t) being the Lya-
punov matrix for a Lyapunov functionV (x; t) = x M(t)x. The results
can be interpreted in an analogous manner with respect to Lyapunov
stability analysis for discrete-time systems.

C. Compositional Contraction Analysis

This section presents a compositional description of nonlinear con-
traction, based on a differential state transition matrix. The approach is
unified across both continuous-time and discrete-time systems. Due to
the linear-like nature of contraction analysis, and specifically the LTV
nature of system (3), the results essentially follow in direct analogy
with results for linear systems.

1) Results: Let �J (t; to) � @x(xo; t)=@xo which is the differen-
tial state transition matrix, be referred to as the transition matrix. The
generalized transition matrix satisfies �z(t) = �F (t; to)�zo and is
given by

�F (t; to) = �(t)�J(t; to)�
�1

o (8)

where �o = �(x(to); to) and �(t) = �(x(t); t). Identically in the
discrete-time case, �J (k; ko) = @x(xo; k)=@xo is the corresponding
transition matrix, with the generalized transition matrix given by
�F (k; ko) = �(k)�J(k; ko)�

�1

o , where �o = �(x(ko); ko) and
�(k) = �(x(k); k). Note that explicit dependence on x has been
omitted in the notation for simplicity.

Theorem 3: A system given by (1) [or (6)] is contracting if
and only if 9 a metric M(x; t) [or M(x; k)] and � < 0 such
that the generalized transition matrix �F satisfies k�F (t; to)k �
e�(t�t ) (or k�F (k; ko)k � e�(k�k )).

Proof: To prove sufficiency assume that k�F (t; to)k � e�(t�t ).
Then

k�z(t)k = k�F (t; to)�zok

� k�F (t; to)kk�zok

� k�zoke
�(t�t ):

To prove necessity take k�z(t)k � k�zoke
�(t�t ). Given k�zok 6= 0

define a normalized state vector v = (�zo=k�zok) and thus

k�z(t)k = k�F (t; to)(k�zokv)k

= k�zokk�F (t; to)vk:

Hence

sup k�z(t)k = k�zok sup
kvk=1

k�F (t; to)vk

= k�zokk�F (t; to)k � k�zoke
�(t�t )

which yields

k�F (t; to)k � e�(t�t ):

Since the normalized vector v can be chosen arbitrarily this completes
the proof. The proof for the discrete-time case is identical, replacing t
by k and to by ko.

2) Remarks:
• Theorem 3, along with a simple proof along the lines of those for

linear systems [14], implies the standard definition of linear ex-
ponential stability with k�J(t; to)k � ce�(t�t ), but emphasizes
the important difference that c = 1 is enforced for �F .

• For a linear system, the transition matrix is clearly the same as the
state transition matrix since � = f(t; to) only.

• The unified result in Theorem 3 implies that � � � in Theorem 1
and � � ln� in Theorem 2. In this regard, j�j will be referred to
as the contraction rate.

• The composition property of the state transition matrix holds for
the differential state transition matrix by uniqueness of solutions
of the linear differential (3), in the same metric

�F (t3; t1) = �F (t3; t2)�F (t2; t1) 8t1; t2; t3:

• The composition property holds for the discrete-time case but in
forward-time only (unless � is invertible)

�F (j; k) = �F (j; i)�F (i; k) 8j � i � k:

III. RESETTING HYBRID SYSTEMS

Resetting hybrid systems, also known as impulsive systems, are de-
fined as systems combining continuous state variables, governed by
differential equations for which some or all of its states are being reset
at discrete time instances via a resetting law, i.e., a difference equation.
The discrete states’ are the indexes of these resets.

Definition 3: A hybrid resetting system is defined by the equations

_x(t) = f(x(t); t); t 6= tj

x(t)+ = h(x(t); t); t = tj

j(t)+ = g(x(t); t; j(t)):

Here, t 2 + and x 2 n is the continuous state and the discrete
state j 2 +� is a piecewise constant signal, which is the resetting
index. The discrete state can be triggered by a state event, a time event
or discrete state history, i.e., memory. Other methods to represent reset-
ting systems include complementarity modeling and impulsive differ-
ential equations with Dirac impulses, see [2], [16], [1], and [13]. How-
ever, the representation of state jumps by resetting laws, the method
used here and in many studies of such systems, is more suited to the
compositional approach employed here.

A. Preliminaries

This section discusses some elementary issues for contraction anal-
ysis of resetting hybrid systems; see [17] and [18] for more formal and



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 51, NO. 9, SEPTEMBER 2006 1539

general introductions to this topic. A resetting system given by Defini-
tion 3 is associated with differential dynamics

d

dt
�x(t) = Jc(x; t)�x(t); t 6= tj

�x(t)+ = Jd(x; t)�x(t); t = tj ; j = 1; 2; . . . (9)

where Jc(x; t) = @f(x; t)=@x is the Jacobian of the vector field f;
Jd(x; t) = @h(x; t)=@x is the Jacobian of the vector field h and tj is
the jth resetting time.

Contraction of such systems is still concerned with exponential sta-
bility of the corresponding differential dynamics. However, such sys-
tems are composed of a family of candidate dynamics rather than a
fixed function for which the convergence of solutions for different ini-
tial conditions is of question. The possible solutions of the system de-
pend in general on the resetting sequences, which yields different in-
terpretations for contraction of hybrid systems from that of nonlinear
systems. For resetting systems, where for every specific resetting se-
quence f(tj ; h(tj))g we can represent the system of Definition 3 by a
single differential equation representing a particular system

_x(t) = f�r (x(t); t): (10)

Note that (10) is an impulsive differential equation, i.e., f�r contains
Dirac impulses, which is another method to represent resetting systems;
see, for example, [2] and[13]. Again when the differential dynamics (9)
is exponentially stable for all sequences f(tj ; h(tj))g then the system
is contracting. Then, all solutions of each particular system (10) con-
verge exponentially to a single particular trajectory. This discussion is
summarized by the following formal definition.

Definition 4: A hybrid resetting system of Definition 3 is said to be
contracting if and only if the associated differential dynamics of (9)
is uniformly exponentially stable. Then, all solutions associated with
each resetting sequence f(tj ; h(tj))g will converge exponentially to a
corresponding particular trajectory.

In case all resetting sequences admit the same particular trajectory,
then convergence is made to this trajectory for all solutions of the re-
setting system. For instance if an overall fixed point of the system is in-
dependent of the resetting sequence, as in most Lyapunov based work,
then contraction implies convergence to that fixed point as it is a par-
ticular solution.

Finally, in this note, as in most of the existing hybrid literature, the
case of infinitely fast resetting is not considered, and thus the set of re-
sets is infinitely countable with nonzero dwell-time, which is enforced
for the system given by Definition 3. Systems that do not satisfy this
assumption are sometimes referred to as Zeno systems, and are not
suited to the compositional approach used here. Indeed, the compo-
sition of differential state transition matrices assumes that there exists
an arbitrarily small constant � > 0 such that the system is governed
by distinct dynamics over an interval [ti; ti+�); see [17] and [18] for
more detailed and formal discussions of this issue. If this assumption
were to be relaxed, then notions such as generalized gradients should
be incorporated with the variational approach of Section II-A, which is
not pursued here. Furthermore, we avoid the trivial case that resetting
stops in finite time in which case the stability depends on the contin-
uous time dynamics only. These assumptions are stated here.

Assumption 1: For a hybrid resetting system the set of resets R as-
sociated with a resetting sequence f(tj ; h(tj))g is infinitely countable
and 9 � > 0 such that � � tj � tj�1 < +1 8j.

Next, upon establishing the equivalent condition for contraction
based on the differential state transition matrix, Theorem 3, along with
the compositional property, we proceed to analyzing contraction of
hybrid systems. We will simply construct the differential transition
matrix of a resetting system as a composition of transition matrices of

subsystems active over arbitrary time intervals. Then if contraction
conditions are satisfied for this overall transition operator for all
resetting sequences or all sequences satisfying certain conditions,
e.g., average dwell-time, this implies contraction of the corresponding
hybrid system for the corresponding resetting sequences.

B. Results

Next, Theorems 4 and 5 give two sufficient conditions for contrac-
tion of resetting systems. Let �(H) � � for some constant � where
H is generalized Jacobian associated with resetting dynamics h(x; t)
in a metric Md = �d�d. While �(Fs) � �, where Fs is the sym-
metric part of the generalized Jacobian associated with f(x; t) in the
metric Mc = �c�c. Also �trj denotes the period between two resets
following the jth reset. Let j�(t) be the number of resets for a given
system by time t such that j� ! +1 as t ! +1. We define, as in
dwell-time based results for switched systems, the average dwell-time
of a resetting system as a positive scalar function �r(t) such that

�r(t) =

j (t)
j=1 �trj

j�(t):

We will obtain two alternative conditions based on whether such a
quantity exists or not in the following theorem.

Theorem 4: A resetting system is contracting if there exits met-
rics that are equal at the resetting times, which means that �c(tj) =
�d(tj) 8j, where tj is the jth resetting time, and � < 0 such that one
of the following holds.

i) � + ln�=�trj � � 8j.
ii) There exists an average dwell-time �r(t) > 0 such that

�+ ln�=�r(t) � � 8t � to.
Proof: Let �J (t; to) be the transition matrix for the continuous-

time dynamics associated with Jacobian Jc and the generalized transi-
tion matrix is �F associated with a generalized Jacobian F . Similarly,
�J is the transition matrix for the discrete-time dynamics (resetting
law) associated with Jacobian Jd and its generalized transition matrix is
�H(t; to) associated with a generalized JacobianH . Then, the compo-
sition property of the transition matrix allows for the overall transition
matrix �J (t; to) to be written as follows:

k�J (t; to)k = k�J (t; t+j )�J (t+j ; tj ) . . .

�J (t2; t
+
1 )�J (t+1 ; t1)�J (t1; to)k

= k�c(t)
�1�F (t; t

+
j )�c(t

+
j ) . . .

�d(t
+
1 )

�1�H(t
+
1 ; t1)�d(t1)

�c(t1)
�1�F (t1; to)�c(to)k:

Using �c(tj) = �d(tj) so that

k�J(t; to)k = k�c(t)
�1�F t; t+j �H t+j ; tj . . .

�H t+1 ; t1 �F (t1; to)�c(to)k

� k�c(t)
�1kk�F t; t+j kk�H t+j ; tj k . . .

k�H(t
+
1 ; t1)kk�F (t1; to)kk�c(to)k:

Now, k�F (tj ; tj�1)k � e��t and k�H(t
+
j ; tj)k � eln � , so that

k�J(t; to)k � k�c(t)
�1kk�c(to)k

j

j=1

e��t +ln �

� ce
��t +ln �

� ce�(t�t ):
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Therefore, � < 0 implies contraction with � = maxj � + ln�=�trj
for part i) and � = �+ ln �=�r for part ii) if �r exists. In here,
k�c(t)

�1kk�c(to)k � c, where c is some constant by boundedness
of the inverse of each metric transformation �c and �d. Note that in
this case the initial and final transitions are due to the continuous-time
dynamics yet only a different constant c would be obtained if these
transitions were due to the resetting law.

The next theorem gives an alternative sufficient condition for con-
traction of state resetting systems, which applies to systems with dif-
ferent constant metrics.

Theorem 5: A resetting system is contracting if there exists constant
metrics Md and Mc and � < 0 such that one of the following holds.

i) �+ ln(�
(�c)
(�d))=�trj � � 8j.
ii) There exists an average dwell-time �r(t) > 0 such that

�+ ln(�
(�c)
(�d))=�r(t) � � 8t � to.
Proof: The proof follows that of Theorem 4 but using �c and �d

constant in the first equation yields

k�J (t; to)k = k��1c �F (t; t
+
j )�c . . . �

�1
d

�H(t
+
1 ; t1)�d�

�1
c �F (t1; to)�ck

� k��1c kk�F (t; t
+
j )kk�ck . . . k�

�1
d k

k�H(t
+
1 ; t1)kk�dkk�

�1
c k

k�F (t1; to)kk�ck:

Now, with k�F (tj ; tj�1)k � e��t and k�H(t
+
j ; tj)k � eln � .

Also, k�ck = �(�c) and k��1c k = 1=�(�c) and 
(�c) =
�(�c)=�(�c) and similarly for �d then

k�J(t; to)k �

j

j=1


(�c)
(�d)e
��t +ln �

� e
ln(�
(� )
(� ))+��t

� e�(t�t ):

Therefore, � < 0 implies contraction of the resetting system
with � = maxj � + ln(�
(�c)
(�d))=�trj for part i) and
� = �+ ln(�
(�c)
(�d))=�r for part ii) if �r exists.

C. Remarks

• In Theorem 4 i) with � < 0 and ln� � 0 (as in many of the ear-
lier results) or vice versa, exponential stability of an LTV resetting
systems, is arbitrary of the resetting period, which is a generaliza-
tion of existing conditions for LTI systems. Similarly, for contrac-
tion of nonlinear systems.

• Note that the use of equal at the resetting times metrics does not
just suggest that a common, but time varying, metric must be used.
It also allows using different time varying metrics as long as re-
setting is enforced at times where these respective metrics are
equal. Note, however, that in most cases where the resetting times
are unknown and uncontrolled then the result reduces to using a
common, possibly time-varying, metric.

• Theorems 4 ii) and 5 ii) are both average dwell-time conditions.
Although a recent result in [6] extended this notion from switched
systems to resetting systems, the same Lyapunov function has
been used for both components of the hybrid dynamics, in contrast
to Theorem 5. Whereas, Theorems 4 i) and 5 i) provide an alterna-
tive uniform dwell-time based condition if an average dwell-time
does not exist. Note that part i) is only needed if �r does not exist
as it is otherwise a special case of part ii) in both theorems.

• The result of Theorem 5, unlike most previous results, allows
using different metrics for both components of the hybrid dy-
namics, which simply means two different quadratic Lyapunov
functions are used, when focusing on LTV systems. Fortunately,
such a result is much easier to use for resetting systems than for
switching systems since we only have two dynamics and thus ver-
ification of such a condition does not require the kind of computa-
tions needed for switched systems. Furthermore, there is less con-
servatism in using such conditions with resetting systems since
no worst case estimates of evolution rates or condition numbers
among subsystems are used; see [9] for contrast with the switched
systems’ case.

• Also, note that the metrics in Theorem 5 can be time-varying if an
upper bound on the condition number for all times is available.

• Note that when � < 0 (continuous-time contracting dynamics)
and � > 1 (noncontracting or “unstable” discrete-time dynamics)
an upper bound on dwell-time is obtained, which yields a max-
imum uniform (or average) dwell-time condition. Whereas, when
� > 0 (continuous-time noncontracting dynamics) and � < 1
(contracting discrete-time dynamics) a lower bound on dwell-time
is obtained, which yields a minimum uniform (or average) dwell-
time condition.

• The results can be extended to resetting systems with switching in
the continuous-time part or the resetting law if a common metric
is used for the switching subsystems Mc (or Md) and � (or �)
are replaced with an upper bound on all terms �i (or �i) since the
proof is done as a composition of transition operators. More elab-
orate results along the same lines can be obtained but are omitted
for space limitation.

IV. APPLICATION EXAMPLES

A. Hybrid TCP Congestion Control

Consider the hybrid TCP congestion control model developed in [5].
The system in congestion avoidance mode can be represented as

_q

_r
=

r �B

a

q+

r+
=

qmax
mr

; if q = qmax

where q is the total queue size, r is the rate of incoming data packets,
andB is rate of outgoing packets. The constants a > 0 andm 2 (0; 1);
see [5] for details. The system resets the rate of incoming packets r if
a drop is detected, i.e., the total queue size equals the maximum value
qmax. Using the identity as a metric for both Mc and Md yields � = 1
and � = m. Therefore, Theorem 4 shows contraction if �r > � ln(m).
The simple model can be actually solved, see [5] for details. This shows
that the resetting is periodic with �r = 2B(1�m)=(a+ma) and thus
the contraction condition translates to 2B(1�m)=(1+m)+a lnm >
0. Since solutions starting at different initial conditions will undergo
the first reset at possibly different times and given a fixed resetting pe-
riod for all solutions, we have convergence to infinitely many periodic
solutions, i.e., particular trajectories, each associated with a domain of
attraction.

B. Advertisement Strategy Control

Consider the problem of advertisement strategy control; see [18]
and the references therein, which is concerned with introducing a new
product into a market of size N . In this problem x; y; z > 0 represent
the number of people unaware of the product, aware of the product but
who have not purchased it, and who have purchased the product, with
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x(t)+y(t)+z(t) = N . Unlike [18] the model uses only two state vari-
ables x and y since the state of the system is completely determined by
only two independent variables. The dynamics of the system is repre-
sented by the hybrid resetting model

_x

_y
=

k 0

�k �a

x

y
+

�k=N

k=N
x2; t 6= tj

x+

y+
=

1� ku 0

ku 1� kv

x

y
; t = tj

where k; a > 0 are the contact rate and the first purchase rates, respec-
tively. The state resetting control is composed of an awareness strategy,
associated with an awareness rate ku, which transforms customers
from group x into y and a trial strategy with a trial rate kv in order
to transform members of the aware group y into costumers z. Note that
the continuous-time dynamics admits two fixed points (x; y) = (N; 0)
and (x; y) = (0; 0), where the latter equilibrium, which corresponds
to z = N , i.e., all potential costumers become actual costumers, is
unstable. However, this equilibrium can be stabilized through the re-
setting law describing the advertisement strategy. Indeed, consider the
metric transformation and corresponding generalized Jacobian for the
continuous-time dynamics

�c =
k=a 0

1 1
; F (x) =

k � 2

N
kx 0

a

k
�a

:

Clearly, the continuous-time dynamics is not contracting since the
target equilibrium is unstable, but a bound on the maximum eigenvalue
of Fs can be obtained as � = sup0�x�N �(Fs). Furthermore, the
discrete-time dynamics can be made contracting if � < 1, with
� = maxf1� ku; 1� kvg and the metric transformation

�d =
0 1� k

k

1 1
:

Therefore, given �; �;�c, and �d shown earlier, the system is
contracting to the unique equilibrium (x; y) = (0; 0) of the overall
dynamics if �+ ln(�
(�c)
(�d))=�trj < 0 8j [Theorem 5 i)] or,
alternatively, with �r replacing �trj if an average dwell-time exists.

V. CONCLUDING REMARKS

Based on a unified compositional description of nonlinear con-
traction, dwell-time-based sufficient conditions for exponential
convergence of hybrid nonautonomous resetting systems are pre-
sented. The description of the transition of resetting hybrid systems
is reduced to a simple compositional operation. This yields stability
conditions generalizing and relaxing several existing results.
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