The Perron-Frobenius theorem

The theorem we discuss here about matrices with non-negative entries was proved first for matrices with positive entries by Perron in 1907 and extended by Frobenius to irreducible matrices with non-negative entries in 1912. This theorem has miriads of applications; in particular for ranking the "importance" of URL's on the web (the Google ranking).

1 Non-negative and positive matrices

We say that a real vector $x = (x_i)_{i \in [n]} \in \mathbb{R}^n$ is *non-negative*, (resp. *positive*) if all the entries x_i are non-negative (resp. positive) ; we write $x \ge 0$ (resp. x > 0). We also use these definitions for real matrices.

A non-negative matrix square A is *irréductible* if

$$\forall i, j \in [n]^2, \exists t \in \mathbb{N}, : A_{ij}^t > 0.$$

It is called *primitive* if

$$\exists t \in \mathbb{N}, \forall i, j \in [n]^2, : A_{ij}^t > 0.$$

The graph associated to the non-negative square matrix A of size $n \times n$ is the directed graph G(A) with the set of vertices equal to [n] and a set of directed edges defined by

$$(i,j) \in E \Leftrightarrow A_{i\,j} > 0.$$

We easily check that $A_{ij}^t > 0$ if and only if there exists a path from *i* to *j* of length *t* in G(A). Hence *A* is irréductible if and only if G(A) is strongly connected.

Exercise 1. Let A be a square positive matrix. Show that if A is nilpotent, then A is not irreducible.

Proposition 2. Let A be a square positive matrix. If A is irreducible, then I + A is primitive.

Proof. The binomial expansion

$$(I+A)^n = \sum_{k=0}^n \left(\begin{array}{c}n\\k\end{array}\right) A^k$$

has positive entries since A is irreducible.

2 Perron-Frobenius theorem

Theorem 3. Let A be an irreducible matrix.

- 1. The spectral radius ρ_A of A is a positive eigenvalue of A.
- 2. Furthermore ρ_A has algebraic and geometric multiplicity one with a positive eigenvector x.
- 3. If A is primitive, then each other eigenvalue λ of A satisfies

$$|\lambda| < \rho_A$$

We now embark on the proof of this important theorem. Let

$$P = (I+A)^n$$

Since P is positive, then for any non-negative and non-null vector v we have Pv > 0. We let

$$Q = \{ x \in \mathbb{R}^n : x \ge 0, x \ne 0 \}$$

so Q is the non-negative orthant excluding the origin. Also let

$$C = \{ x \in \mathbb{R}^n : x \ge 0, \|x\| = 1 \}$$

where $\|.\|$ is any norm on \mathbb{R}^n . Clearly C is a compact set.

For any $z \in Q$, let us introduce

$$L(z) = \max\{s \in \mathbb{R} : sz \leqslant Pz\} = \min_{1 \leqslant i \leqslant n, z_i \neq 0} \frac{(Az)_i}{z_i}.$$

We now give some basic properties of L.

- 1. By definition L(rz) = L(z) for any r > 0.
- 2. If z is an eigenvector of A for the eigenvalue λ , then $L(z) = \lambda$.
- 3. If $sz \leq Az$, then

$$sPz \leqslant PAz = APz,$$

and so

$$L(Pz) \ge L(z).$$

Furthermore, if z is not an eigenvector of A, then $sz \neq Az$ for any s and sPz < APz. From the second expression of L(z), it follows that L(z) < L(Pz).

That suggests a plan for the proof of the Perron-Frobenius theorem: we look for a positive vector which maximizes L, show that it is the eigenvector we want in the theorem, and establishes the properties stated in the theorem.

Proof of the Perron-Frobenius theorem

1. Finding a positive eigenvector.

Consider the image of C under P: it is a compact set and all the vectors in P(C) are positive. Hence by the second expression of L(z), we obtain that L is continuous on P(C). Thus L achieves its maximum value on P(C), i.e., there exists $x \in P(C)$ such that

$$L(x) = \sup_{z \in C} L(Pz).$$

Since $L(z) \leq L(Pz)$, in fact x realizes the maximum value L_{max} of L on Q. Hence

$$L_{\max} = L(x) \leqslant L(Px) \leqslant L_{\max}.$$

From the third property of L, it follows that x is an eigenvector of A with the eigenvalue L_{\max} . Since $x \in P(C)$, x is a positive vector.

2. Showing that L_{\max} is the spectral radius.

Let $z \in \mathbb{C}^n$ be an eigenvector of A with the eigenvalue $\lambda \in \mathbb{C}$, and let |z| the vector in \mathbb{R}^n whose entries are $|z_i|$. We have $|z| \in Q$, and from $Az = \lambda z$ which says that

$$\lambda z_i = \sum_{k=1}^n A_{i\,k} z_k$$

and the fact that $A_{ik} \ge 0$ we conclude that

$$|\lambda| |z_i| \leq \sum_{k=1}^n A_{ik} |z_k|$$

which we write for short as

$$|\lambda| \, |z| \leqslant A|z|.$$

By definition of L, it follows that

$$|\lambda| \leq L(|z|).$$

Hence $|\lambda| \leq L_{\max}$ which proves that

$$\rho \leqslant L_{\max}$$

where ρ is the spectral radius of A. Conversely from what we have just proved, we deduce that

$$L_{\max} \leq \rho.$$

That achieves the proof of item 1 in the theorem.

3. Showing that $L(z) = L_{\max} \Rightarrow Az = L_{\max}z \land z > 0$

Observe that the above proof shows that if $L(z) = L_{\text{max}}$, then

$$L(z) = L(Pz).$$

Thus z is an eigenvector of A for the eigenvalue L_{max} . It follows that z is also an eigenvector of P, i.e., $Pz = \lambda z$. Since P is positive, we have Pz > 0. So z is positive.

4. Showing that $0 \leq B \leq A$, $B \neq A \Rightarrow \rho_B < \rho_A$.

First let us stress on the fact that, contrary to A, the matrix B is not supposed to be irreducible. Suppose that $Bz = \lambda z$ with $z \in \mathbb{C}^n$ and $\lambda \in \mathbb{C}$. Then

$$|\lambda| |z| \leq B|z| \leq A|z|.$$

It follows that

$$|\lambda| \leqslant L_A(|z|) \leqslant \rho_A.$$

Therefore

 $\rho_B \leqslant \rho_A.$

Suppose that $|\lambda| = \rho_A$. Then from the above inequalities, we derive that $L_A(z) = \rho_A$. Using the above remark, we obtain that |z| is an eigenvector of A for the eigenvalue ρ_A and z positive. Hence B|z| = A|z| with z > 0 which is impossible unless A = B.

Replacing the *i*-th row and column of A by zeros gives a non-negative matrix A_i such that $0 \leq A_i \leq A$. Moreover $A_i \neq A$ since the irreducibility of A precludes all the entries in a row being zeros. This proves that for each matrix $A_{(i)}$ obtained by eliminating the *i*-th row and the *i*-th column of A, the eigenvalues of $A_{(i)}$ are all less than ρ_A .

5. A basic lemma in linear algebra

Let A be a square marix of size n and Δ the diagonal matrix with entries $X^T = (x_1, \dots, x_n) \in \mathbb{R}^n$ along the diagonal. Expanding det $(\Delta - A)$ along the *i*-th row shows that

$$\frac{\partial}{\partial x_i} \det(\Delta - A) = \det(\Delta_{(i)} - A_{(i)}).$$

So

$$\frac{\mathrm{d}}{\mathrm{d}\,x}\,\det(xI-A) = \sum_{i=1}^{n}\det(xI-A_{(i)})$$

6. Showing that ρ_A has algebraic multiplicity one

First observe that

$$\det(xI - A_i) = x \det(xI - A_{(i)}).$$

By what we have just proved

$$\det(\rho_A I - A_{(i)}) > 0.$$

This shows that the derivative of the characteristic polynomial of A is not zero at ρ_A , and therefore the algebraic (and so geometric) multiplicity of ρ_A is one.

That completes the proof of item 2.

7. Proof of the last assertion of the Perron-Frobenius theorem

The *t*-th powers of the eigenvalues of A are the eigenvalues of A^t . So if we want to show that there are no eigenvalues of a primitive matrix with absolute values¹ equal to ρ_A other than ρ_A , it is enough to prove this for a positive matrix.

Suppose that $Az = \lambda z$ with $z \in \mathbb{C}^n$, $\lambda \in \mathbb{C}$ and $|\lambda| = \rho_A$. Then

$$\rho_A |z| = |Az| \leqslant A|z|.$$

It follows that

$$\rho_A \leqslant L(|z|) \leqslant \rho_A$$

which implies that $L(|z|) = \rho_A$. From the assertion (4) above, we deduce that |z| is an eigenvector of A with the eigenvalue ρ_A . Moreover, we have

$$|Az| = A|z|$$

¹Attention : la traduction en francais, de "absolute value" est "module" (et non "valeur absolue").

In particular

$$|\sum_{i=1}^{n} A_{1i} z_i| = \sum_{i=1}^{n} A_{1i} |z_i|$$

Since all the entries of A are positive, this implies that there exists $u \in \mathbb{C}$ (with an absolute value equal to 1) such that

$$\forall i \in [n], \ z_i = u|z_i|.$$

Hence z and |z| are collinear eigenvectors of A. So the corresponding eigenvalues λ and ρ_A are equal, as required.

3 Asymptotic behavior of powers of a primitive matrix

Let A be a primitive matrix and ρ_A its spectral radius. Let x be a positive eigenvector of A with the eigenvalue ρ_A . The transpose of A has the same spectrum (with same algebraic multiplicities) as A. In particular, the spectral radius of A^T is also ρ_A , and ρ_A is an eigenvalue with algebraic multiplicity 1. Since A^T is also an irreducible positive matrix, we can apply the Perron-Frobenius theorem to A^T and derive that there exists a unique positive vector y up to scalar by a positive number such that

$$A^T(y) = y$$

Let us choose y so that $x^T y = \sum_{i=1}^n x_i y_i = 1$. We easily check that

$$\mathbb{R}^n = \mathbb{R}x \oplus \ker y^T$$

and $\mathbb{R}x$ as well as ker y^T are invariant under A. Moreover the matrix $H = xy^T$ is the projection whose image is $\mathbb{R}x$ and whose kernel is ker y^T .

We set

$$P = \frac{1}{\rho_A} A$$

and we consider the restriction of P to ker y^T that we denote Q. Clearly 1 is an eigenvalue of P with algebraic multiplicity one, and the spectrum of Q is equal to

$$Sp(Q) = Sp(P) \setminus \{1\}.$$

Furthermore by item 3 in the Perron-Frobenius theorem, every eigenvalue λ of P different from 1 satisfies $|\lambda| < 1$. Hence

$$\rho_Q < 1.$$

Let

$$v = \mu x + z$$

with $z \in \ker y^T$; so $Hv = \mu x$. For any $t \in \mathbb{N}$,

$$P^t v = \mu x + Q^t z.$$

By Gelfand's theorem, we have

 $\|Q^t\| \sim (\rho_Q)^t$

where $\|.\|$ is any matrix norm. Therefore

$$\lim_{t \to +\infty} P^t v = H v.$$

So we have proved that

Theorem 4. Let A be a non-negative matrix. If A is primitive, then

$$\lim_{t \to +\infty} \left(\frac{1}{\rho_A}A\right)^t = xy^T$$

where x and y are positive eigenvectors of A and A^T for the eigenvalue ρ_A , and $x^T y = 1$.

4 Criteria for a matrix to be primitive

The cyclicity of an irreducible non-negative matrix A is the greatest common divisor of the lengths of the cycles in the associated graph. Let $\mathbf{N}_{i,j}$ be the subset of integers defined by:

$$\mathbf{N}_{i,j} = \{t \in \mathbb{N} \mid A^t > 0\}$$

Let us denote the cyclicity of A by γ ; let $\gamma_i = \text{gcd}(\mathbf{N}_{i,i})$. Obviously,

$$\gamma = \gcd(\{\gamma_i \mid i \in V\}). \tag{1}$$

Observe that each $\mathbf{N}_{i,i}$ is closed under addition (semi-group); let $\gamma_i = \text{gcd}(\mathbf{N}_{i,i})$. We will use the following elementary lemma from number theory whose proof is based on Bézout theorem and left as exercise.

Lemma 5. A set **N** of positive integers that is closed under addition contains all but a finite number of multiples of its greatest common divisor.

Exercise 6. Prove Lemma 5.

Lemma 7. For any $i \in [n]$, $\gamma_i = \gamma$.

Proof. Let i, j be any pair of nodes in the associated graph, and let $a \in \mathbf{N}_{i,j}$ and $b \in \mathbf{N}_{j,i}$. The concatenation of a path from i to j with a path from j to i is a closed path starting at i. Hence $a + b \in \mathbf{N}_{i,i}$. From Lemma 5, we know that $\mathbf{N}_{j,j}$ contains all the multiples of γ_j greater than some integer. Consider any such multiple $k\gamma_j$ with k and γ_i relatively prime integers. By inserting one corresponding cycle at node j into the cycle at i with length a + b, we obtain a new cycle starting at i, i.e., $a + k\gamma_j + b \in \mathbf{N}_{i,i}$. It follows that γ_i divides both a + b and $a + k\gamma_j + b$, and so γ_i divides γ_j . Similarly, we prove that γ_j divides γ_i , and so $\gamma_i = \gamma_j$. By (1), the common value of the γ_i 's is actually equal to γ .

We are now in position to give several criterions for an irreducible matrix to be primitive.

Theorem 8. Let A be an irreducible matrix. The following assertions are equivalent:

- 1. The matrix A is primitive.
- 2. All the eigenvalues of A different from its spectral radius ρ_A satisfy $|\lambda| < \rho_A$.

- 3. The sequence of matrices $\left(\frac{1}{\rho_A}A\right)^t$ converges to a positive matrix.
- 4. There exists some $i \in [n]$ such that $\gamma_i = 1$.
- 5. The cyclicity of A is equal to 1.

Proof. $(1) \Rightarrow (2)$ coincides with the last item of the Perron-Frobenius theorem.

To show that $(2) \Rightarrow (3)$, it suffices to observe that actually, the proof of Theorem 4 uses the assertion (2) only.

Suppose (3) and let $i \in [n]$. The sequence $\left(\frac{1}{(\rho_A)^t}A_{i\,i}^t\right)$ converges to a positive limit. Hence for t enough large, we have $A_{i\,i}^t > 0$. It follows that $\gamma_i = 1$, i.e., assertion (4) holds.

Lemma 7 shows that (4) and (5) are equivalent.

Now assume (4), i.e., $\gamma_i = 1$ for some $i \in [n]$. By Lemma 5, there exists some integer t_i such that $[t_i, +\infty \subseteq \mathbf{N}_{i,i}]$. Let $j, k \in [n]$; since A is irreducible there exist two positive integers u and v at most equal to n such that

$$A_{j\,i}^{u} > 0$$
 and $A_{i\,k}^{v} > 0$

Hence for each $t \ge 2n + t_i$, we have

$$A_{jk}^t \ge A_{ji}^u A_{ii}^{t-u-v} A_{ik}^v > 0$$

which proves that A is primitive.

5 The Leslie model of population growth

In 1945, Leslie introduced a model for the growth of a population and its projected age distribution that is closed to migration and where only one sex, usually the female, is considered. Thus the population is described by a vector whose size is the number of age groups and whose *i*-th component is the number of females in the *i*-th age group. For a thorough discussion of the Leslie model, see the book [?].

Let f_i be the expected number of daughters produced by a female in the *i*-th age group, and s_i the proportion of females in the *i*-th age group who survive to the next age group in one time unit.

Exercise 9. The point of the exercise is to study the growth of a population in the Leslie model.

- 1. Show that the transition after one time unit is given by an irreducible matrix L (called the Leslie matrix).
- 2. Show that L has a unique positive eigenvector up to some positive scalar.
- 3. Under what condition L is primitive? If so, show that asymptotically the total population grows (or declines) at some rate r and that the relative size of each age group to the total population converges to some limit that is independent of the initial population.
- 4. Consider the population of Atlantic salmon who die immediately after spawning, and assume that there are three age groups. The corresponding Leslie matrix is equal to

$$\left(\begin{array}{rrrr} 0 & 0 & f \\ s_1 & 0 & 0 \\ 0 & s_2 & 0 \end{array}\right)$$

What happens asymptotically?

6 Stochastic matrices and ergodic matrices

A non-negative matrix A is *stochastic* if the entries in each row sum to 1:

$$\forall i \in [n], \ \sum_{k=1}^{n} A_{ik} = 1.$$

In other words, each row of A is a probability vector.

We easily check that the set of stochastic matrices is compact, and that the (finite or infinite) product of stochastic matrices is a stochastic matrix. By definition the column vector 1 all of whose entries equal 1 is an eigenvector with eigenvalue 1. Moreover, 1 is its spectral radius: let v an eigenvector with the eigenvalue λ , and let $i \in [n]$ such that $|v_i| = \max_{k=1}^{n} |v_k|$. Thus

$$|\lambda v_i| = |\sum_{k=1}^n A_{i\,k} v_k| \leqslant \sum_{k=1}^n A_{i\,k} |v_k| \leqslant \sum_{k=1}^n A_{i\,k} = |v_i|.$$

So $|\lambda| \leq 1$.

A stochastic matrix that is primitive is said to be *ergodic*. From the Perron-Frobenius theorem, we know that if A is an irreducible stochastic matrix, then 1 is an eigenvalue with algebraic (and geometric) multiplicity 1 with a positive eigenvector. Moreover if A is ergodic, then all the other eigenvalues of A satisfy $|\lambda| < 1$.

Exercise 10. 1. Find an example of a stochastic matrix such that 1 is not a simple eigenvalue (algebraic multiplicity greater than one).

2. Find an example of a stochastic matrix with an eigenvalue different from 1 whose absolute value is equal to 1.

The positive vector y defined in Section 3 for any irreducible matrix A and any positive eigenvector x corresponding to the eigenvalue ρ_A is called the *Perron vector* of A when x is the 1 vector; it is denoted by π_A or simply π when no confusion can arise. Recall that it is defined by

$$\pi > 0, \quad \sum_{i=1}^{n} \pi_i = 1, \quad A^T \pi = \pi.$$

As an immediate corollary of Theorem 4, we derive the following convergence result for powers of an ergodic matrix.

Corollary 11. Let A be a stochastic matrix. If A is ergodic, then the sequence of matrices $(A^t)_{t \in \mathbb{N}}$ converges to a (stochastic) matrix with range 1. More precisely

$$\lim_{t \to +\infty} A^t = \mathbb{1}\pi^T$$

where π is the Perron vector of A.

Exercise 12. Let A be the stochastic matrix. Find a necessary and sufficient condition on A for the Perron vector of A to be collinear with the vector 1.

In the case of Exercise 12, A is said to be a *doubly stochastic* matrix.

Exercise 13. Let G be a bidirectional graph with n vertices, and let A be the stochastic matrix whose associated graph is G and whose non-zero entries in each row are all equal. Compute the Perron vector of A.

Exercise 14. Let G be the directed graph whose set of nodes is [n] and formed by the union of a directed cycle C_n consisting of the edges (i, i + 1) (where i is taken modulo n) and n - 1 edges (i, 1) for $i \in [n - 1]$. Let A be the stochastic matrix whose associated graph is G and whose non-zero entries in each row are all equal. Show that the Perron vector π of A is given by

$$\pi_i = \begin{cases} 1/(2-2^{-n+1}) & \text{if } i = 1\\ 2^{-i+1}\pi_1 & \text{if } i \in [n] \end{cases}$$

Compare with the case of a bidirectional graph (previous exercise).