
The Perron-Frobenius theorem

The theorem we discuss here about matrices with non-negative entries was proved first for
matrices with positive entries by Perron in 1907 and extended by Frobenius to irreducible matrices
with non-negative entries in 1912. This theorem has miriads of applications; in particular for
ranking the “importance” of URL’s on the web (the Google ranking).

1 Non-negative and positive matrices

We say that a real vector x = (xi)i∈[n] ∈ Rn is non-negative, (resp. positive) if all the entries xi are
non-negative (resp. positive) ; we write x > 0 (resp. x > 0). We also use these definitions for real
matrices.

A non-negative matrix square A is irréductible if

∀i, j ∈ [n]2,∃t ∈ N, : Ati j > 0.

It is called primitive if
∃t ∈ N, ∀i, j ∈ [n]2, : Ati j > 0.

The graph associated to the non-negative square matrix A of size n × n is the directed graph
G(A) with the set of vertices equal to [n] and a set of directed edges defined by

(i, j) ∈ E ⇔ Ai j > 0.

We easily check that Ati j > 0 if and only if there exists a path from i to j of length t in G(A).
Hence A is irréductible if and only if G(A) is strongly connected.

Exercise 1. Let A be a square positive matrix. Show that if A is nilpotent, then A is not irreducible.

Proposition 2. Let A be a square positive matrix. If A is irreducible, then I +A is primitive.

Proof. The binomial expansion

(I +A)n =

n∑
k=0

(
n
k

)
Ak

has positive entries since A is irreducible.

2 Perron-Frobenius theorem

Theorem 3. Let A be an irreducible matrix.

1. The spectral radius ρA of A is a positive eigenvalue of A.

2. Furthermore ρA has algebraic and geometric multiplicity one with a positive eigenvector x.

3. If A is primitive, then each other eigenvalue λ of A satisfies

|λ|< ρA.
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We now embark on the proof of this important theorem. Let

P = (I +A)n.

Since P is positive, then for any non-negative and non-null vector v we have Pv > 0.
We let

Q = {x ∈ Rn : x > 0, x 6= 0}

so Q is the non-negative orthant excluding the origin. Also let

C = {x ∈ Rn : x > 0, ‖x‖= 1}

where ‖.‖ is any norm on Rn. Clearly C is a compact set.
For any z ∈ Q, let us introduce

L(z) = max{s ∈ R : sz 6 Pz} = min
16i6n,zi 6=0

(Az)i
zi

.

We now give some basic properties of L.

1. By definition L(rz) = L(z) for any r > 0.

2. If z is an eigenvector of A for the eigenvalue λ, then L(z) = λ.

3. If sz 6 Az, then
sPz 6 PAz = APz,

and so
L(Pz) > L(z).

Furthermore, if z is not an eigenvector of A, then sz 6= Az for any s and sPz < APz. From
the second expression of L(z), it follows that L(z) < L(Pz).

That suggests a plan for the proof of the Perron-Frobenius theorem: we look for a positive
vector which maximizes L, show that it is the eigenvector we want in the theorem, and establishes
the properties stated in the theorem.

Proof of the Perron-Frobenius theorem

1. Finding a positive eigenvector.

Consider the image of C under P : it is a compact set and all the vectors in P (C) are positive.
Hence by the second expression of L(z), we obtain that L is continuous on P (C). Thus L achieves
its maximum value on P (C), i.e., there exists x ∈ P (C) such that

L(x) = sup
z∈C

L(Pz).

Since L(z) 6 L(Pz), in fact x realizes the maximum value Lmax of L on Q. Hence

Lmax = L(x) 6 L(Px) 6 Lmax.

From the third property of L, it follows that x is an eigenvector of A with the eigenvalue Lmax.
Since x ∈ P (C), x is a positive vector.
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2. Showing that Lmax is the spectral radius.

Let z ∈ Cn be an eigenvector of A with the eigenvalue λ ∈ C, and let |z| the vector in Rn whose
entries are |zi|. We have |z|∈ Q, and from Az = λz which says that

λzi =
n∑
k=1

Ai kzk

and the fact that Ai k > 0 we conclude that

|λ| |zi|6
n∑
k=1

Ai k|zk|

which we write for short as
|λ| |z|6 A|z|.

By definition of L, it follows that
|λ|6 L(|z|).

Hence |λ|6 Lmax which proves that
ρ 6 Lmax

where ρ is the spectral radius of A. Conversely from what we have just proved, we deduce that

Lmax 6 ρ.

That achieves the proof of item 1 in the theorem.

3. Showing that L(z) = Lmax ⇒ Az = Lmax z ∧ z > 0

Observe that the above proof shows that if L(z) = Lmax, then

L(z) = L(Pz).

Thus z is an eigenvector of A for the eigenvalue Lmax. It follows that z is also an eigenvector of P ,
i.e., Pz = λz. Since P is positive, we have Pz > 0. So z is positive.

4. Showing that 0 6 B 6 A, B 6= A ⇒ ρB < ρA.

First let us stress on the fact that, contrary to A, the matrix B is not supposed to be irreducible.
Suppose that Bz = λz with z ∈ Cn and λ ∈ C. Then

|λ| |z|6 B|z|6 A|z|.

It follows that
|λ|6 LA(|z|) 6 ρA.

Therefore
ρB 6 ρA.

3



Suppose that |λ|= ρA. Then from the above inequalities, we derive that LA(z) = ρA. Using
the above remark, we obtain that |z| is an eigenvector of A for the eigenvalue ρA and z positive.
Hence B|z|= A|z| with z > 0 which is impossible unless A = B.

Replacing the i-th row and column of A by zeros gives a non-negative matrix Ai such that
0 6 Ai 6 A. Moreover Ai 6= A since the irreducibility of A precludes all the entries in a row being
zeros. This proves that for each matrix A(i) obtained by eliminating the i-th row and the i-th
column of A, the eigenvalues of A(i) are all less than ρA.

5. A basic lemma in linear algebra

Let A be a square marix of size n and ∆ the diagonal matrix with entries XT = (x1, · · · , xn) ∈ Rn
along the diagonal. Expanding det(∆−A) along the i-th row shows that

∂

∂xi
det(∆−A) = det(∆(i) −A(i)).

So
d

dx
det(xI −A) =

n∑
i=1

det(xI −A(i)).

6. Showing that ρA has algebraic multiplicity one

First observe that
det(xI −Ai) = x det(xI −A(i)).

By what we have just proved
det(ρAI −A(i)) > 0.

This shows that the derivative of the characteristic polynomial of A is not zero at ρA, and therefore
the algebraic (and so geometric) multiplicity of ρA is one.

That completes the proof of item 2.

7. Proof of the last assertion of the Perron-Frobenius theorem

The t-th powers of the eigenvalues of A are the eigenvalues of At. So if we want to show that
there are no eigenvalues of a primitive matrix with absolute values1 equal to ρA other than ρA, it
is enough to prove this for a positive matrix.

Suppose that Az = λz with z ∈ Cn, λ ∈ C and |λ|= ρA. Then

ρA |z|= |Az|6 A|z|.

It follows that
ρA 6 L(|z|) 6 ρA,

which implies that L(|z|) = ρA. From the assertion (4) above, we deduce that |z| is an eigenvector
of A with the eigenvalue ρA. Moreover, we have

|Az|= A|z|.
1Attention : la traduction en francais, de “absolute value” est “module” (et non “valeur absolue”).
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In particular

|
n∑
i=1

A1 izi|=
n∑
i=1

A1 i|zi|.

Since all the entries of A are positive, this implies that there exists u ∈ C (with an absolute value
equal to 1) such that

∀i ∈ [n], zi = u|zi|.

Hence z and |z| are collinear eigenvectors of A. So the corresponding eigenvalues λ and ρA are
equal, as required.

3 Asymptotic behavior of powers of a primitive matrix

Let A be a primitive matrix and ρA its spectral radius. Let x be a positive eigenvector of A with
the eigenvalue ρA. The transpose of A has the same spectrum (with same algebraic multiplicities)
as A. In particular, the spectral radius of AT is also ρA, and ρA is an eigenvalue with algebraic
multiplicity 1. Since AT is also an irreducible positive matrix, we can apply the Perron-Frobenius
theorem to AT and derive that there exists a unique positive vector y up to scalar by a positive
number such that

AT (y) = y.

Let us choose y so that xT y =
∑n

i=1 xiyi = 1.
We easily check that

Rn = Rx⊕ ker yT

and Rx as well as ker yT are invariant under A. Moreover the matrix H = xyT is the projection
whose image is Rx and whose kernel is ker yT .

We set

P =
1

ρA
A

and we consider the restriction of P to ker yT that we denote Q. Clearly 1 is an eigenvalue of P
with algebraic multiplicity one, and the spectrum of Q is equal to

Sp(Q) = Sp(P ) \ {1}.

Furthermore by item 3 in the Perron-Frobenius theorem, every eigenvalue λ of P different from 1
satisfies |λ|< 1. Hence

ρQ < 1.

Let
v = µx+ z

with z ∈ ker yT ; so Hv = µx. For any t ∈ N,

P tv = µx+Qtz.

By Gelfand’s theorem, we have
‖Qt‖∼ (ρQ)t
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where ‖.‖ is any matrix norm. Therefore

lim
t→+∞

P tv = Hv.

So we have proved that

Theorem 4. Let A be a non-negative matrix. If A is primitive, then

lim
t→+∞

( 1

ρA
A
)t

= xyT

where x and y are positive eigenvectors of A and AT for the eigenvalue ρA, and xT y = 1.

4 Criteria for a matrix to be primitive

The cyclicity of an irreducible non-negative matrix A is the greatest common divisor of the lengths
of the cycles in the associated graph. Let Ni,j be the subset of integers defined by:

Ni,j = {t ∈ N | At > 0}.

Let us denote the cyclicity of A by γ; let γi = gcd(Ni,i). Obviously,

γ = gcd({γi | i ∈ V }). (1)

Observe that each Ni,i is closed under addition (semi-group); let γi = gcd(Ni,i). We will use
the following elementary lemma from number theory whose proof is based on Bézout theorem and
left as exercise.

Lemma 5. A set N of positive integers that is closed under addition contains all but a finite
number of multiples of its greatest common divisor.

Exercise 6. Prove Lemma 5.

Lemma 7. For any i ∈ [n], γi = γ.

Proof. Let i, j be any pair of nodes in the associated graph, and let a ∈ Ni,j and b ∈ Nj,i. The
concatenation of a path from i to j with a path from j to i is a closed path starting at i. Hence
a+ b ∈ Ni,i. From Lemma 5, we know that Nj,j contains all the multiples of γj greater than some
integer. Consider any such multiple kγj with k and γi relatively prime integers. By inserting one
corresponding cycle at node j into the cycle at i with length a+ b, we obtain a new cycle starting
at i, i.e., a+kγj +b ∈ Ni,i. It follows that γi divides both a+b and a+kγj +b, and so γi divides γj .
Similarly, we prove that γj divides γi, and so γi = γj . By (1), the common value of the γi’s is
actually equal to γ.

We are now in position to give several criterions for an irreducible matrix to be primitive.

Theorem 8. Let A be an irreducible matrix. The following assertions are equivalent:

1. The matrix A is primitive.

2. All the eigenvalues of A different from its spectral radius ρA satisfy |λ|< ρA.
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3. The sequence of matrices
(

1
ρA
A
)t

converges to a positive matrix.

4. There exists some i ∈ [n] such that γi = 1.

5. The cyclicity of A is equal to 1.

Proof. (1)⇒ (2) coincides with the last item of the Perron-Frobenius theorem.
To show that (2) ⇒ (3), it suffices to observe that actually, the proof of Theorem 4 uses the
assertion (2) only.
Suppose (3) and let i ∈ [n]. The sequence

(
1

(ρA)tA
t
i i

)
converges to a positive limit. Hence for t

enough large, we have Ati i > 0. It follows that γi = 1, i.e., assertion (4) holds.
Lemma 7 shows that (4) and (5) are equivalent.
Now assume (4), i.e., γi = 1 for some i ∈ [n]. By Lemma 5, there exists some integer ti such that
[ti,+∞[⊆ Ni,i. Let j, k ∈ [n]; since A is irreducible there exist two positive integers u and v at
most equal to n such that

Auj i > 0 and Avi k > 0.

Hence for each t > 2n+ ti, we have

Atj k > Auj iA
t−u−v
i i Avi k > 0

which proves that A is primitive.

5 The Leslie model of population growth

In 1945, Leslie introduced a model for the growth of a population and its projected age distribution
that is closed to migration and where only one sex, usually the female, is considered. Thus the
population is described by a vector whose size is the number of age groups and whose i-th component
is the number of females in the i-th age group. For a thorough discussion of the Leslie model, see
the book [?].

Let fi be the expected number of daughters produced by a female in the i-th age group, and si
the proportion of females in the i-th age group who survive to the next age group in one time unit.

Exercise 9. The point of the exercise is to study the growth of a population in the Leslie model.

1. Show that the transition after one time unit is given by an irreducible matrix L (called the
Leslie matrix).

2. Show that L has a unique positive eigenvector up to some positive scalar.

3. Under what condition L is primitive? If so, show that asymptotically the total population
grows (or declines) at some rate r and that the relative size of each age group to the total
population converges to some limit that is independent of the initial population.

4. Consider the population of Atlantic salmon who die immediately after spawning, and assume
that there are three age groups. The corresponding Leslie matrix is equal to 0 0 f

s1 0 0
0 s2 0

 .

What happens asymptotically?
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6 Stochastic matrices and ergodic matrices

A non-negative matrix A is stochastic if the entries in each row sum to 1:

∀i ∈ [n],

n∑
k=1

Ai k = 1.

In other words, each row of A is a probability vector.
We easily check that the set of stochastic matrices is compact, and that the (finite or infinite)

product of stochastic matrices is a stochastic matrix. By definition the column vector 1 all of
whose entries equal 1 is an eigenvector with eigenvalue 1. Moreover, 1 is its spectral radius: let v
an eigenvector with the eigenvalue λ, and let i ∈ [n] such that |vi|= maxnk=1|vk|. Thus

|λvi|= |
n∑
k=1

Ai kvk|6
n∑
k=1

Ai k|vk|6
n∑
k=1

Ai k = |vi|.

So |λ|6 1.
A stochastic matrix that is primitive is said to be ergodic. From the Perron-Frobenius theorem,

we know that if A is an irreducible stochastic matrix, then 1 is an eigenvalue with algebraic (and
geometric) multiplicity 1 with a positive eigenvector. Moreover if A is ergodic, then all the other
eigenvalues of A satisfy |λ|< 1.

Exercise 10. 1. Find an example of a stochastic matrix such that 1 is not a simple eigenvalue
(algebraic multiplicity greater than one).

2. Find an example of a stochastic matrix with an eigenvalue different from 1 whose absolute
value is equal to 1.

The positive vector y defined in Section 3 for any irreducible matrix A and any positive eigen-
vector x corresponding to the eigenvalue ρA is called the Perron vector of A when x is the 1 vector;
it is denoted by πA or simply π when no confusion can arise. Recall that it is defined by

π > 0,
n∑
i=1

πi = 1, ATπ = π.

As an immediate corollary of Theorem 4, we derive the following convergence result for powers
of an ergodic matrix.

Corollary 11. Let A be a stochastic matrix. If A is ergodic, then the sequence of matrices
(
At
)
t∈N

converges to a (stochastic) matrix with range 1. More precisely

lim
t→+∞

At = 1πT

where π is the Perron vector of A.

Exercise 12. Let A be the stochastic matrix. Find a necessary and sufficient condition on A for
the Perron vector of A to be collinear with the vector 1.

In the case of Exercise 12, A is said to be a doubly stochastic matrix.
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Exercise 13. Let G be a bidirectional graph with n vertices, and let A be the stochastic matrix
whose associated graph is G and whose non-zero entries in each row are all equal. Compute the
Perron vector of A.

Exercise 14. Let G be the directed graph whose set of nodes is [n] and formed by the union of a
directed cycle Cn consisting of the edges (i, i+ 1) (where i is taken modulo n) and n− 1 edges (i, 1)
for i ∈ [n − 1]. Let A be the stochastic matrix whose associated graph is G and whose non-zero
entries in each row are all equal. Show that the Perron vector π of A is given by

πi =


1/
(
2− 2−n+1

)
if i = 1

2−i+1π1 if i ∈ [n]

Compare with the case of a bidirectional graph (previous exercise).
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