
Models and Preliminaries

1 Synchronous rounds

We introduce:

1. the notion of rounds;

2. the notion of synchronous rounds with no message loss.

That naturally leads to the communication graph at round t, denoted G(t) = (V,E(t)), which
is a directed graph with a set of nodes V , and to the dynamic graph G =

(
G(t)

)
t∈N∗ , which is an

infinite sequence of directed graphs over V.
Then we discussed various system models leading to different ways for producing communication

graphs, and so dynamic graphs (external oracles vs. endogenous rules).

2 Networks, Algorithms, and Specifications

In the following, we fix a non-empty set V. For any non-empty set V , a valuation of V is a mapping
µ : V → V.

Networks and classes of networks

A network means a valued dynamic graph, i.e., a dynamic graph G = (V,E) with a valuation µ
of V ; the network is then denoted Gµ = (V, µ,E). The nodes of G are called agents.

Classes of networks specify knowledge: the larger the class is, the smaller the knowledge is. For
instance, the class of all networks corresponds to no knowledge while a class reduced to a singleton
corresponds to maximum knowledge. Common situations studied in the literature include the
knowledge of the whole network (the latter example), of the number of agents (the class of all
networks with the same number of agents), of the set of valuations (identifiers), or of some graph-
theoretical property.

A class of networks C is naturally structured into an infinite tree: each network corresponds to
an infinite branch from the root, and every edge in the tree is labelled by the corresponding directed
graph. However, it is important to note that an infinite branch from the root may correspond to no
network in C. The class of networks C is said to be closed if there is a one-to-one correspondance
between the infinite branches from the root and the networks in C.

Algorithms

An algorithm A (for V) is a quintuple A = (X,X0,M, S, T ) where

1. X is a non-empty set;
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2. X0 is a non-empty subset of X;

3. M is a non-empty set;

4. S is a mapping S : V ×X →M;

5. T is a mapping T : V ×X ×M⊕ → X, where M⊕ denotes the set of multisets over M.

The elements of M are called messages. The functions S and T are called the sending function
and the transition function of the algorithm, respectively.

A configuration of A for a set of agents V is any function C : V → X; C is said to be an initial
configuration of A if C : V → X0.

An execution of A for the network Gµ, where µ is a valuation of V , is an infinite sequence of
A’s configurations for V ,

(
C(t)

)
t∈N, such that

1. C(0) is an initial configuration of A;

2. ∀t ∈ N,∀i ∈ V, Ci(t + 1) = T
(
µ(i), Ci(t),Mi(t + 1)

)
, where Mi(t + 1) is the multiset of

messages received by i in round t+ 1, i.e., Mi(t+ 1) = 〈S(µ(j), Cj(t)) : j ∈ Ini(t+ 1)〉.

Observe that A is deterministic: from any initial configuration C0, the algorithm A has a unique
execution for a given network Gµ. The algorithm A is said to be self-stabilizing if it may start from
any configuration, that is to say when X0 = X.

Let us now fix a set V of agents, a class of networks C over V , and a valuation of V . Let C be
any configuration of A for V . A configuration C ′ is said to be reachable from C in C if there exits
an execution

(
C(t)

)
t∈N of A for a network in C and two indices t and t′, t 6 t′, such that C(t) = C

and C(t′) = C ′. The nodes in the above mentioned tree associated to C may be labelled by the
configurations reachable in C from an initial configuration C0, and every execution of A from C0

corresponds to an infinite branch starting at C0.

Specifications

Let Y be any non-empty set. A specification on Y is a mapping

S : µ→ Sµ ⊆
(
Y V

)ω
that assigns a set Sµ of infinite sequences of elements in Y V to any valuation µ of V . The specifi-
cation S is said to be stabilizing if each set Sµ is suffix-closed.

Examples. For every consensus problem, we let

Y = V × (V ∪ {⊥})

and we only consider infinite sequences y such that

∀i ∈ V,∀t ∈ N, yi[1](t) = yi[1](0).

Given y ∈
(
Y V

)ω
, we let µi := yi[1](0) and write yi(t) instead of yi[2](t) as no confusion may arise.

Irrevocable consensus. The set SV is the set of infinite sequences such that
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Init: ∀i ∈ V,∀t ∈ N, yi(0) = ⊥.
Validity: ∀i ∈ V,∀t ∈ N, yi(t) 6= ⊥ ⇒ yi(t) ∈ {µj : j ∈ V }.
Termination: ∀i ∈ V,∃ti ∈ N∗, ∀t > ti, yi(t) 6= ⊥.
Irrevocability and Agreement: ∀i, j ∈ V,∀s, t ∈ N, yi(s) 6= ⊥ ∧ yi(t) 6= ⊥ ⇒ yi(s) = yj(t).

Stabilizing consensus. The set SV is the set of infinite sequences such that

Convergence: ∀i ∈ V, limt→∞ yi(t) exists for the discrete topology.

Validity: ∀i ∈ V, limt→∞ yi(t) exists ⇒ limt→∞ yi(t) ∈ {µj : j ∈ V }.
Agreement: ∀i, j ∈ V, limt→∞ yi(t) and limt→∞ yj(t) exist ⇒ limt→∞ yi(t) = limt→∞ yj(t).

Asymptotic consensus. The value domain is V = Rd. The set SV is the set of infinite sequences
such that

Convergence: ∀i ∈ V, limt→∞ yi(t) exists for the euclidean metrics.

Validity: ∀i ∈ V, limt→∞ yi(t) exists ⇒ limt→∞ yi(t) ∈ conv(µj : j ∈ V ).

Agreement: ∀i, j ∈ V, limt→∞ yi(t) and limt→∞ yj(t) exist ⇒ limt→∞ yi(t) = limt→∞ yj(t).

Solvability in a class of networks

Let S be a specification on Y , and let C be a class of networks. An algorithm A is said to solve S in
C if the state space of A is of the form X ×Y and if for every network Gµ in C and every execution
of A for Gµ (

x(0), y(0)
)
,
(
x(1), y(1)

)
,
(
x(2), y(2)

)
, · · ·

the infinite sequence
y(0), y(1), y(2), · · ·

is in Sµ.
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