Algorithms for Irrevocable Consensus

1 The *OneThirdRule* algorithm

Algorithm 1 The OneThirdRule algorithm

1: Initialization: 2: $x_i := \nu_i$ $\{ \nu_i \text{ is the initial value of } i \}$ 3: $y_i := \bot$ 4: **S**_i : send $\langle x_i \rangle$ to all 5: 6: **T**_i : if more than 2n/3 values have been received in the current round then 7: $x_i :=$ the smallest value amongst the most frequent received values 8: if more than 2n/3 values received in the current round are equal to $\overline{\nu}$ then 9: 10: $y_i := \overline{\nu}$

Theorem 1.1. The OneThirdRule algorithm achieves irrevocable consensus in any network \mathbb{G} such that

- 1. $\exists t_0 \in \mathbb{N}^*, \ \exists S \subseteq V, \ |S| > 2n/3 \ and \ \mathbb{G}(t_0) \ is \ S$ -uniform;
- 2. $\forall i \in V, \forall t \in \mathbb{N}^*, \exists t_i \ge t, |\operatorname{In}_i(t_i)| > 2n/3.$

2 The Last Voting algorithm

We assume that the network is equipped with an oracle Leader, which may be questioned at each round $t \equiv 1 \mod 4$. The response provided to the agent *i* by the oracle is denoted by Leader[*i*].

Theorem 2.1. The LastVoting algorithm achieves irrevocable consensus in any network \mathbb{G} for which there exists an index $\Phi_0 \in \mathbb{N}^*$ such that

1.
$$\forall i \in V$$
, $|\text{In}_i(4\Phi_0 - 3)| > n/2$ and $|\text{In}_i(4\Phi_0 - 1)| > n/2$;

2.
$$\forall i, j \in V^2$$
, Leader $[i](\Phi_0) = \text{Leader}[j](\Phi_0)$;

3. $\forall i \in V$, Leader $[i](\Phi_0) \in In_i(4\Phi_0 - 3) \cap In_i(4\Phi_0 - 2) \cap In_i(4\Phi_0 - 1) \cap In_i(4\Phi_0)$.

Algorithm 2 The LastVoting algorithm 1: Initialization : $x_i \in \mathcal{V}$, initially ν_i 2: $\{\nu_i \text{ is the initial value of } i\}$ $vote_i \in \mathcal{V} \cup \{?\}, \text{ initially } ?$ 3: $commit_i$ a Boolean, initially false 4: $ready_i$ a Boolean, initially false 5:6: $ts_i \in \mathbb{N}$, initially 0 $numround_i \in \mathbb{N}$, initially 1 7: 8: **S**_i : if $numround_i \equiv 1 \mod 4$ then 9: send $\langle x_i, ts_i \rangle$ to Leader[i] 10: if $numround_i \equiv 2 \mod 4$ then 11: if i = Leader[i] and $commit_i$ then 12:send $\langle vote_i \rangle$ to all 13:if $numround_i \equiv 3 \mod 4$ then 14:if $ts_i = (numround_i + 1)/4$ then 15:send $\langle ack \rangle$ to Leader[i] 16:if $numround_i \equiv 0 \mod 4$ then 17:18: if i = Leader[i] and $ready_i$ then send $\langle vote_i \rangle$ to all 19:20: **T**_i : if $numround_i \equiv 1 \mod 4$ then 21: 22: if i = Leader[i] and number of $\langle \nu, \theta \rangle$ received > n/2 then let $\overline{\theta}$ be the largest θ from $\langle \nu, \theta \rangle$ received 23: $vote_i := one \ \nu$ such that $\langle \nu, \overline{\theta} \rangle$ is received 24: 25: $commit_i := \texttt{true}$ if $numround_i \equiv 2 \mod 4$ then 26:if received $\langle v \rangle$ from Leader[i] then 27: $x_i := v$; $ts_i := (numround_i + 2)/4$ 28:if $numround_i \equiv 3 \mod 4$ then 29:30: if i = Leader[i] and number of $\langle ack \rangle$ received > n/2 then $ready_i := true$ 31: 32: if $numround_i \equiv 0 \mod 4$ then 33: if received $\langle v \rangle$ from Leader[i] then 34: $y_i := v$ if i = Leader[i] then 35: $ready_i := false$ 36: $commit_i := \texttt{false}$ 37: $numround_i := numround_i + 1$ 38: