
CHAPTER 2

Asymptotic consensus

In this chapter we consider a set of autonomous agents that interact with each other by ex-
changing values and perform instantaneous operations on received values. Agents each start with
a real value and must reach agreement on a value which is a convex combination of the initial
values. The agents are not required to agree exactly as in the decision problem called consensus in
fault-tolerance [Lyn96], but ought to iteratively compute values that all converge to the same limit.

The motivation for this asymptotic consensus problem comes from a variety of contexts involving
distributed systems. For example, sensors (altimeters) on board an aircraft could be attempting to
reach agreement about the altitude. Or a collection of clocks that are possibly drifting apart have
to maintain clock values that are sufficiently close.

For the multi-agent systems that we consider, the asymptotic consensus problem has been
proposed a solution which consists in an iterative linear procedure that we shall refer to as the
CC (for convex combination) algorithm. It has been introduced by DeGroot [DeG74] for the
synchronous and time-invariant case, and then has been extended by Tsitsiklis et al. [Tsi84, TBA86]
to the case of asynchronous communications and time-varying environment. A related algorithm
has been later proposed by Vicsek et al. [VCBJ+95] as a model of cooperative behavior. The
subject has recently attracted considerable interest within the context of flocking and multi-agent
coordination (see for instance [JLM03, Mor05, Cha12, OSFM07] for surveys and references).

We first introduce an operator seminorm for stochastic matrices. We then establish a simple
seminorm based criterion for an infinite product of stochastic matrices to converge to a rank one
matrix (Theorem 5) and use it to give another proof of the convergence theorem of powers of an
ergodic matrix. Next we give orientation and connectivity based conditions under which the CC
algorithm achieves asymptotic consensus in the context of time-varying topology. These conditions
unify and extend earlier convergence results, namely the one in [Tsi84, TBA86, Mor05, HB05,
BHOT05, CSM05, TN11, HT11], and notably concern the coordinated and the decentralized models
of multi-agent systems that are defined by simple orientation and connectivity properties on their
communication graphs.

1 The CC algorithm with time-varying topology

We briefly recall the model for the CC algorithm, and the set of assumptions that are usually made.
We consider a set of n agents denoted 1, · · · , n. We assume the existence of a discrete global clock
and we take the range of the clock’s ticks to be the set N of natural numbers. The state of the
agent i is captured by a scalar variable xi, and the value held by i at time t is denoted xi(t). Each
agent i starts with an initial value xi(0), and the evolution of the local variable xi is described by
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the linear transition function:

xi(t+ 1) =
n∑
j=1

Ai,j(t)xj(t) . (1)

Equation (1) corresponds to the fact that at each time t+1, the agent i updates xi with a weighted
average of the values it has received at time t. In the presence of communication delays, the value
received by i from j at time t may be an outdated value, i.e., sent by j at some time τij(t) with
0 6 τij(t) 6 t. For each time t, we form the n × n matrix A(t) and the communication graph
G(t) =

(
[n] , E(t)

)
which is the directed graph with a node for each agent in [n] = {1, · · · , n} and

where there is an edge from i to j if and only if Ai,j(t) > 0. In other words, the agent i is connected
to the agent j in G(t) if i hears of j at time t.

We now formulate a series of assumptions on the matrices A(t) which hold naturally in the
context of a multi-agent system running the CC algorithm.

A1: Each matrix A(t) is stochastic.

A2: Each communication graph G(t) contains all possible self-loops, i.e., Ai,i(t) > 0 for all i ∈ [n].

A3: The positive entries of the matrices A(t), t ∈ N, are uniformly lower bounded, i.e., there exists
α ∈]0, 1] such that Ai,j(t) ∈ {0} ∪ [α, 1] for all i, j ∈ [n] and all t ∈ N.

Assumption A1 corresponds to the updating rules of the xi’s in terms of weighted averages
discussed above. Assumption A2 expresses the fact that an agent has an immediate access to its
own current value. Assumption A3 is obviously fulfilled when the set of matrices A(t) is finite.

2 A seminorm for multi-agent dynamics

2.1 An operator seminorm

For any integer n > 2, we consider the seminorm on Rn defined as the difference between the
maximum and minimum entry of vector x

N(x) = max
i

(xi)−min
i

(xi) .

Thus N(x) is null if and only if x ∈ R1, where 1 is the vector whose components are all equal to 1.
For any square matrix A with 1 as an eigenvector, the induced matrix seminorm N(A) is

N(A) = sup
x/∈R1

N(Ax)
N(x)

= sup
N(x)=1

N(Ax) .

One key property of the seminorm N is that it is sub-multiplicative, i.e.,

N(AB) 6 N(A)N(B) .

Another one is about the vectors that realize N(A).

Lemma 1. Let A be a square matrix with 1 as an eigenvector, and let {ei | i ∈ [n]} denote the
standard basis of Rn. There exists a nonempty subset I of [n] such that the vector eI =

∑
i∈I ei

realizes N(A), i.e.,
N(A) = N

(
AeI

)
.
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Proof. Let x be a vector such that N(x) = 1, and let x = x − xi01 where xi0 = mini(xi). Then
N
(
x
)

= 1, and xi0 = mini(xi) = 0. Since A(1) = 1,

N(A) = sup
{
N(Ax) | x ∈ Rn with max

i
(xi) = 1 and min

i
(xi) = 0

}
.

Moreover by compactness, there exists a vector x with maxi(xi) = 1 and mini(xi) = 0, and such
that N(A) = N(Ax).

Now suppose that some entries of x are not in {0, 1}, and let xj ∈]0, 1[ be one of them. We
consider the two vectors x− = x − xj · ej and x+ = x − (1 − xj) · ej , and we denote y = Ax,
y− = Ax−, and y+ = Ax+. Then for any index i, we have y−i = yi − xjAij , y+

i = yi + (1− xj)Aij ,
and so y−i 6 yi 6 y+

i . Since N(x) = N
(
x−
)

= N
(
x+
)

= 1, N
(
y−
)

and N
(
y+
)

are both less or
equal to N(A). Let i0 and i1 be two indices such that N(y) = yi1 − yi0 . Then

y−i1 − y
−
i0

= N(A)− xj(Ai1j −Ai0j) and y+
i1
− y+

i0
= N(A) + (1− xj)(Ai1j −Ai0j) .

From xj ∈]0, 1[, y−i1 − y−i0 6 N(A), and y+
i1
− y+

i0
6 N(A), we derive that Ai1j = Ai0j , and so

N
(
y−
)

= N
(
y+
)

= N(A). One by one, we thus eliminate all the entries of x different from 0 and
1, and obtain a vector of the desired form.

Observe that if eI =
∑

i∈I ei realizes N(A), then so does eI , where I denotes the complement
of I within [n].

The vector 1 is an eigenvector of each stochastic matrix, and we easily check that for any
stochastic matrix A and any vector x ∈ Rn,

N(Ax) 6 N(x) .

It follows that the induced matrix seminorm of a stochastic matrix is less or equal to 1.
Interestingly we can compare N(A) with the coefficients of ergodicity of A previously introduced

in the literature [Haj58, Wol63], namely

δ(A) = max
j

max
i1,i2
|Ai2j −Ai1j | ,

and

λ(A) = 1−min
i1,i2

n∑
j=1

min(Ai1j , Ai2j) .

Proposition 2. Let A be a stochastic matrix. Then

δ(A) 6 N(A) and N(A) = λ(A) .

Proof. First we observe that
δ(A) = max

j=1,··· ,n
N
(
Aej

)
,

and the inequality δ(A) 6 N(A) immediately follows.
We now consider a realizer of N(A) that we denote eI =

∑
i∈I ei (cf. Lemma 1). Let f = AeI ,

fp = maxi fi, and fq = mini fi. Then we have

N(A) =
∑
j∈I

(Apj −Aqj) .
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Since A is a stochastic matrix, we get

1−N(A) =
n∑
j=1

Apj −
∑
j∈I

(Apj −Aqj) =
∑
j /∈I

Apj +
∑
j∈I

Aqj .

Hence

1−N(A) >
n∑
j=1

min(Apj , Aqj) ,

and the inequality N(A) 6 λ(A) immediately follows.
Conversely let p and q be two indices in [n] such that

λ(A) = 1−
n∑
j=1

min(Apj , Aqj) ,

and let us define
I = {j ∈ [n] | Apj > Aqj} .

Then
λ(A) = 1−

(∑
j∈I

Aqj +
∑
j /∈I

Apj
)

=
∑
j∈I

Apj −
∑
j∈I

Aqj .

By definition of N
(
AeI

)
, we have ∑

j∈I
Apj −

∑
j∈I

Aqj 6 N
(
AeI

)
which shows λ(A) 6 N(A) and completes the proof.

Exercise 3. Give a stochastic matrix A such that δ(A) 6= N(A).

We now give a corollary that is useful for convergence proofs.

Corollary 4. Let A be a n×n stochastic matrix, j be any index in [n], and let βj be the minimum
of all the entries in the j-th column, i.e., βj = min{Ai,j | i ∈ [n]}. Then,

N(A) 6 1−
n∑
j=1

βj .

In particular, if all the entries of one column of A are positive, then N(A) < 1.

Proof. Since all A’s entries are non-negative, we have

λ(A) 6 1−
n∑
j=1

βj .

Using Proposition 2, we derive that N(A) 6 1−βj . In the case βj > 0 for some index j, we obtain
N(A) < 1.
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2.2 A simple criterion for convergence

Now we give a seminorm based condition on a sequence of stochastic matrices under which their
product converges to a rank one (stochastic) matrix. This criterion lies implicitly behind several
convergence proofs (for instance, see [BT89, Section 7.3] or [BHOT05, TN11].

Theorem 5. For each integer t ∈ N, let A(t) be a stochastic matrix, and let P (t) = A(t) . . . A(0).
The following conditions are equivalent:

1. The sequence
(
P (t)

)
t∈N converges to a matrix of the form 1πT where π is a probability vector

in Rn.

2. The sequence
(
N
(
P (t)

))
t∈N converges to 0.

3. For each vector v ∈ Rn, the sequence
(
P (t)v

)
t∈N converges to some vector in the line R1.

4. For each vector v ∈ Rn, the sequence
(
N
(
P (t)v

))
t∈N converges to 0.

Proof. The implications (1)⇒ (2), (3)⇒ (4), (1)⇒ (3), and (2)⇒ (4) are obvious.
To show that (4)⇒ (3), we consider a sequence of vectors x(t) = P (t)v where v is some vector

in Rn. We denote
M(t) = max

i

(
xi(t)

)
and m(t) = min

i

(
xi(t)

)
.

Hence N
(
x(t)

)
= M(t)−m(t), and (4) is equivalent to limt→∞M(t)−m(t) = 0. Since each matrix

A(t) is stochastic, the sequences
(
M(t)

)
t∈N and

(
m(t)

)
t∈N are non-increasing and non-decreasing,

respectively. It follows that the latter two sequences as well as all the sequences
(
xi(t)

)
t∈N are

convergent to the same limit, which shows (3).
For the implication (3)⇒ (1), suppose that (3) holds. In particular with v = ej , each sequence(

Pij(t)
)
t∈N converges to some scalar j independent of index i. Therefore, the sequence

(
P (t)

)
t∈N

converges, and limt→+∞ P (t) = 1πT . Since each matrix P (t) is stochastic and the set of stochastic
matrices is closed, π is a probability vector.

3 Asymptotic consensus in the case of fixed interactions

As an immediate consequence of Corollary 4, the sub-multiplicativity of the seminorm N , and
Theorem 5, we obtain the well-known result that for any ergodic stochastic matrix A, limt→∞A

t

exists and is a rank one stochastic matrix.

Corollary 6. (convergence of powers of an ergodic matrix again). Let A be a stochastic matrix.
If A is ergodic, then

lim
t→+∞

At = 1πT

where π is a probability vector.

The above corollary proves that the CC algorithm achieves asymptotic consensus in the case of
fixed interactions with a fixed strongly connected topology.

Observe that as it is specified in the introduction, one does not care about getting the average
of the initial values in the consensus problem:
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4 The Wolfowitz theorem

We now make a first attempt at extending the above convergence result to non constant interactions:
we shall prove the Wolfowitz theorem [Wol63] which generalizes Corollary 6 to infinite products of
matrices taken from a finite set of ergodic stochastic matrices.

Theorem 7 (Wolfowitz). Let M be a nonempty finite set of stochastic matrices such that any
finite product of matrices in this set is ergodic. For each t ∈ N, let A(t) be a matrix in M. Then
limt→+∞A(t) · · ·A(0) exists, and the limit is of the form 1πT where π is a probability vector in Rn.

We begin the proof by showing the following lemma.

Lemma 8. The seminorm of any product of n2 + 1 matrices in M is less than 1.

Proof. Let ∼ be the equivalence relation defined on the set of square stochastic matrices by A ∼ B
iff A and B have the same communication graph. Firstly we remark that ∼ is preserved by
(right) multiplication with stochastic matrices. Secondly from the expression of the seminorm of a
stochastic matrix resulting from the equality N = λ in Proposition 2, we observe that the conditions
N(A) = 1 and N(B) = 1 are equivalent when A ∼ B.

Let A0, · · · , An2 be n2 + 1 matrices inM. Since there are at most n2 equivalence classes under
the relation ∼, there exist two indices k, `, 0 6 k < ` 6 n2, such that

An2 · · ·A` ∼ An2 · · ·Ak .

Let A = An2 · · ·A` and B = A`−1 · · ·Ak; we have AB ∼ A. It follows that for any positive integer n,
ABn ∼ A. Moreover by assumption onM, the matrix B is ergodic, i.e., Bn0 > 0 for some positive
integer n0.

Now suppose that N
(
A
)

= 1. The second remark shows that N
(
ABn0

)
= 1 and by the sub-

multiplicativity of N , we get N
(
Bn0

)
= 1, a contradiction with Corollary 4. Therefore, N

(
A
)
< 1.

Using the sub-multiplicativity of N again, we obtain

N
(
An2 · · ·A0

)
< 1

as required.

Proof of Theorem 7. Let ν denote the supremum of the seminorms of the matrices that are a
product of n2 + 1 matrices in M. Since M is finite, there is a finite number of such matrices
and Lemma 8 shows that ν < 1. Using the sub-multiplicativity of the seminorm, the theorem
immediately follows.

5 Asymptotic consensus in the coordinated model and the decen-
tralized model

In this section, we show how to use the criterion in Theorem 5 to prove convergence theorems where
the finiteness assumption of the setM in the Wolfowitz theorem is weakened by assuming a uniform
positive lower bound on positive entries (assumption A3), and where the ergodicity assumption is
replaced by conditions that basically guarantee “eventual positivity” of some finite products of
matrices in M.
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5.1 The coordinated model and the decentralized model

Let us recall that for a directed graph G, its strongly connected components are, in general, strictly
included into its connected components defined as the connected components of the undirected
version of G. Let us also recall that the directed graph G = (V,E) is said to be j-oriented, for
j ∈ V , if for every node there exists a directed path originating at this node and terminating
at j [GB81]. If G is j-oriented for some node j, then G is said to be oriented. We now introduce
the following condition on sequences of communication graphs.

C : At every time t ∈ N, the communication graph G(t) is oriented.

Intuitively, while the communication graph is j-oriented, the agent j gathers the values in its
strongly connected component, computes some weighted average value, and attempts to impose
this value to the rest of the agents as long as the communication graph remains j-oriented. In
other words, its particular position in the communication graph makes j to play the role of system
coordinator for the CC algorithm. Accordingly, we define the coordinated model as the model of
multi-agent systems which, in addition to assumptions A, satisfy condition C.

From the above discussion about the role of coordinator, it is easy to grasp why in the particular
case of a steady coordinator, all the agents converge to a common value when running the CC
algorithm. The theorem just below shows that asymptotic consensus is actually achieved even
when coordinators change over time.

Theorem 9. In the coordinated model, the CC algorithm guarantees asymptotic consensus.

Cao et al. [CSM05] proved that in the case of stochastic matrices with equal positive entries in
each row that we have referred to as the equal neighbor model, and under assumptions A, the CC
algorithm achieves asymptotic consensus when all the communication graphs are oriented. Their
convergence result thus coincides with Theorem 9 in the particular case of the equal neighbor model.

We then introduce a second model of multi-agent systems, the decentralized model, in which
the orientation condition C of the coordinated model is replaced by two connectivity conditions D1
and D2. Before stating them, let us recall that a directed graph is said to be semisimple if all its
connected components are strongly connected. Observe that a bidirectional graph is semisimple.
The following exercise provides a larger class of directed graphs that are semisimple.

Exercise 10. Show that an eulerian graph is semisimple.

In fact, we can give a characterization of semisimple graphs which will be very useful afterwards.

Exercise 11. Let G be a directed graph, Prove that the following two assertions are equivalent:

1. G is semisimple.

2. There is no subset of nodes with an outgoing edge and no incoming edge.

D1: For every time t ∈ N, the directed graph ([n] ,∪s>tE(s)) is strongly connected.

D2: At every time t ∈ N, the communication graph G(t) is semisimple.

The second main convergence result for non constant interactions is the following convergence
theorem for the CC algorithm.
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Theorem 12. In the decentralized model, the CC algorithm guarantees asymptotic consensus.

The convergence mechanism behind this result can be understood as follows in intuitive terms:
there is no source (that is, no node without incoming edge) in a semisimple directed graph, and
thus for the decentralized model, there is no dead end in the information flow of each connected
component of the communication graph. The strong connectivity condition D1 guarantees that the
values computed in each connected component are then spread out over the whole system. Even if
at a given time, the roles performed by agents may be not at all equivalent since the communication
graph may be non-symmetric, all the agents eventually play the same role over time and converge
to the same value.

Because of the self-loop assumption A2, the decentralized model corresponds to a weak form
of ergodicity, namely each matrix A(t) is block ergodic. Similarly, a close inspection of the proof
of Theorem 9 given below reveals that in the coordinated model, each matrix A(t) is “partially
ergodic” in the sense that there exist some index j in [n] and some positive integer n such that all
the entries in the j-th column of the matrix

(
A(t)

)n are positive. Clearly a matrix that is both
block ergodic and partially ergodic is ergodic. Since a strongly connected directed graph is oriented
with respect to each of its nodes, the intersection of the coordinated model and the decentralized
model indeed coincides with the model where communication graphs are all strongly connected.

5.2 Core of the proofs of Theorems 9 and 12

At the core of the proofs of Theorems 9 and 12 is the investigation of the the time evolution of the
sets of positive entries in each column of the successive products of the matrices A(t). A simple
combinatorial argument allows us to conclude immediately for the case of the coordinated model.
The decentralized model requires a more elaborate argument to prove the eventual positivity of
some columns of the successive products of the matrices A∆(t).

First let us introduce some pieces of notation. For any time t′ > t, we let

A(t′ : t) = A(t′) . . . A(t).

In particular A(t : t) = A(t) ; let us denote the entry of A(t′ : t) at the i-th row and j-th column
by Ai j(t′ : t). From assumption A1 and the recurrence relation

A(t′ : t) = A(t′)A(t′ − 1 : t)

that holds for all t′ > t+ 1, we derive that for any index k ∈ [n],

Ai j(t′ : t) > Ai k(t′)Ak j(t′ − 1 : t). (2)

In particular, we have
Ai j(t′ : t) > Ai i(t′)Ai j(t′ − 1 : t). (3)

We now choose some time t0 > 0 which stays fixed except in the very last steps of the proofs of
Theorems 9 and 12. Then we consider any index j ∈ [n] and study the entries in the j-th column
of A(t : t0). For that we define the set

Sj(t) = {i ∈ [n] | A(t : t0) > 0}.
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Showing that j ∈ Sj(t0).

Since A(t0 : t0) = A(t0), the assertion directly follows from assumption A2 on the matrix A(t0).

Showing that the sequence of sets
(
Sj(t)

)
t>t0

is non decreasing.

The inclusion Sj(t) ⊆ Sj(t+ 1) follows from assumption A2 and the inequality (3).

As a consequence of the latter two properties, none of the sets Sj(t) is empty. We define αj(t)
as the minimum positive entry in the j-th column of the matrix A(t : t0), or

αj(t) = min{Ai,j(t : t0) | i ∈ Sj(t)}.

Proving that αj(t+ 1) > ααj(t).

This is also an immediate consequence of the inequality (3) and of assumptions A2-3.

A condition on the communication graph for Sj to increase.

Suppose that Sj(t) has an incoming edge in the graph G(t + 1), that is to say that there exist
p /∈ Sj(t) and q ∈ Sj(t) such that Ap q(t+ 1) > 0. By inequality (2), we get

Ap j(t+ 1 : t0) > Ap q(t+ 1)Aq j(t : t0)

which implies that Ap j(t + 1 : t0) is positive, i.e., p ∈ Sj(t + 1). Equivalently if Sj(t) = Sj(t + 1),
then the latter set has no incoming edge in G(t+ 1).

5.3 Asymptotic consensus in the coordinated model

We now consider the coordinated model (assumptions A and C) and complete the proof of Theo-
rem 9.

We start by specializing the above condition (ensuring that the set Sj increases) to the case of
j-oriented communication graphs.

Proving that if G(t+ 1) is j-oriented, then either Sj(t) 6= Sj(t+ 1) or Sj(t) = [n].

Suppose that Sj(t) = Sj(t + 1); then Sj(t) has no incoming link in G(t + 1). Since G(t + 1) is
j-oriented and j is in Sj(t), it follows that Sj(t) = [n].

Construction of a positive column in finite time

Let us define
S(t) = {(i, j) ∈ [n]2 | i ∈ Sj(t)}.

Because of the basic properties of the sets Sj , we have

n 6 |S(t0)|6 n2

and
∀t > t0, S(t) ⊆ S(t+ 1).

9



In the coodinated model, at each time t, either S(t) 6= S(t + 1) or there is an agent j such that
Sj(t) = [n] by what we have just proved. That shows there is an agent j for which

Sj(t0 + n2 − 2n+ 1) = [n].

In other words, the matrix A(t0 + n2 − 2n + 1 : t0) has at least one of its columns with positive
entries.

End of the proof

We are now in position to complete the proof of Theorem 9. Let us consider an agent j such that

Sj(t0 + n2 − 2n+ 1) = [n]

which exists by what we have just proved. By the property of αj pointed out in Section 5.2 , we
have

αj(t0 + n2 − 2n+ 1) > αn
2−2n+1.

By Corollary 4, we derive

N
(
A(t0 + ∆n2 − 2n+ 1 : t0)

)
6 1− αn2−2n+1.

Together with the sub-multiplicativity of the seminorm N , this implies that

lim
t→+∞

N
(
A(t : 0)

)
= 0.

Theorem 9 then follows from Theorem 5.

5.4 Asymptotic consensus in the decentralized model

We now consider the decentralized model (assumptions A and D). Under the sole assumptions
A and D2, the set S may remain small forever: for example, in the case of the sequence of the
powers of the unit matrix, S is constantly equal to the diagonal in [n]2. Firstly, we show that
assumption D1 ensures that S is eventually equal to [n]2. However, D1 provides no bound on the
time required the set S to be maximal, and so under assumptions A and D1, no positive lower
bound on the positive entries of the matrices A(t : t0) are guaranteed. In a second step, we shall
show that assumption D2 allows us to control how functions αj decrease in time.

We start by refining the strong connectivity property of the graph G0 = ([n] ,∪t>t0E(t)) ensured
by D1.

Construction of a positive matrix column by column.

Let us introduce the graph
G∞ = ([n] , E∞)

where E∞ is the set of edges in G0 that occur infinitely often. Using the pigeon-hole principle, we
obtain that G∞ is actually equal to

G∞ = ([n] ,∪t>θE(t))
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for some θ > t0. By D1, we deduce that G∞ is strongly connected. Hence for every pair of nodes
(i, j) ∈ [n]2, there exists a finite sequence of nodes p1, . . . , pl starting at p1 = j and ending at pl = i
such that each edge (pk, pk−1) is in E(tk) with tk > tk−1 + 1 and t2 > θ. Let us denote θij = tl and
θj = maxi∈[n]

(
θij
)
.

By repeating inequality (2), we obtain that

Ai j(θj : t0) > Aj j(θj : θij + 1)
l∏

k=2

Apk pk−1
(tk)Apk−1 pk−1

(tk − 1 : tk−1 + 1)

with the notation t1 = t0 − 1 and A(t− 1 : t) = I. It follows that for all i ∈ [n],

Ai j(θj : t0) > 0

which proves that the j-th column of Ai j(θj : t0) is positive, i.e.,

Sj(θj) = [n].

A condition on the communication graph for αj not to decrease when Sj is stationary.

Suppose that Sj(t) = Sj(t+ 1), and let S denote this set. We have

Ai j(t+ 1 : t0) =
n∑
k=1

Ai k(t+ 1) Ak j(t : t0) =
∑
k∈S

Ai k(t+ 1) Ak j(t : t0).

By definition of αj , we have

Ai j(t+ 1 : t0) > αj(t)
∑
k∈S

Ai k(t+ 1).

In the case S has no outgoing edge in the communication graph G(t+ 1) and if i is in S, then for
each k which does not belong to S, we have Ai k(t+ 1) = 0, and so

Ai j(t+ 1 : t0) > αj(t).

This implies that if S has no outgoing edge, then

αj(t+ 1) > αj(t).

End of the proof

We now put it all together to prove Theorem 12. Let

θ = max
j=1··· ,n

(
θj
)

where the θj ’s are defined as above. Combining Exercise 11 with all what we have proved before,
we obtain that if the communication graphs are all semisimple, then

∀t > θ : ∀j ∈ [n] : αj(t) > αn.
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By Corollary 4, we derive
N
(
A(θ : t0)

)
6 1− nαn.

In other words, we have shown that for any t0 > 0, there exists θ > t0 such that

N
(
A(θ : t0)

)
6 1− nαn.

Together with the sub-multiplicativity of the seminorm N , this implies that

lim
t→+∞

N
(
A(t : 0)

)
= 0

and Theorem 9 follows from Theorem 5.
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