
PACS Part 2, Lecture 7
PAC Learning

• PAC = probably approximately correct

• let’s say we want to learn an interval [a, b] based on samples from a
distribution D on R

• we won’t be able to learn it exactly using a finite number of samples

• one sample = a point x ∼ D and the information whether x ∈ [a, b]

• want measure of error of approximation of learned interval [c, d]:

P(x ∈ [a, b]∆[c, d]) < ε

• optimum is ε = 1 in general, based on which samples we see

• but we can wish for an approximation error of ε of the learned interval
with probability ≥ 1 − δ (Monte Carlo algorithm)

• it turns out we only need O( 1
ε log 1

δ ) samples to do just that

Sample Complexity
• a candidate interval [c, d] can be discarded if we sample an x ∈ [a, b]∆[c, d]

• the number of samples to eliminate a single [c, d] with P(x ∈ [a, b]∆[c, d]) ≥
ε with probability ≥ 1 − δ can be bounded by m = 1

ε log 1
δ

• application of the union bound gives m = 1
ε log k

δ samples to eliminate k
such intervals

• however, we want to eliminate all of them simultaneously

VC Dimension
• VC = Vapnik–Chervonenkis

• A range space is a pair (X, R) where X is a set and R is a set of subsets
of X.

• If S ⊆ X, then (S, RS) with RS = {R ∩ S | R ∈ R} is also a range space.
It is called the projection on S.

• A set S ⊆ X is shattered by R if |RS | = 2|S|.

• The VC dimension of (X, R) is the maximum cardinality of a set S ⊆ X
that is shattered by R.

• Example: X = R, R = {[a, b] | a, b ∈ R} has VC dimension 2
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• Example: X = R2, R = {C ⊆ X | C is convex} has infinite VC dimension
(take n points on a circle)

• Example: X = {0, 1}, R = {f : X → {0, 1} | f is monotone} has VC
dimension n (take the n points with exactly one zero; shatter by doing the
AND of the never-zero variables)

Growth Function
• G(d, n) =

∑d
i=0

(
n
i

)
• If (X, R) is a range space of VC dimension d with |X| = n, then |R| ≤

G(n, d).

Proof: By induction on d and n. The base cases with d = 0 or n = 0 hold
since G(d, n) = 1 in this case. For the induction step, assume that the
claim holds for the pairs (d − 1, n − 1) and (d, n − 1). Choose some x ∈ X
and consider the range spaces

R1 = {R \ {x} | R ∈ R}
R2 = {R \ {x} | R ∪ {x} ∈ R ∧ R \ {x} ∈ R}

on the point set X \ {x}. We have |R| = |R1| + |R2|. Further, the VC
dimension of (X \ {x}, R1) is ≤ d and that of (X \ {x}, R2) is ≤ d − 1. We
thus calculate:

|R| = |R1| + |R2| ≤ G(d, n − 1) + G(d − 1, n − 1)

=
d∑

i=0

(
n − 1

i

)
+

d−1∑
i=0

(
n − 1

i

)
=

d∑
i=0

(
n

i

)
= G(d, n)

Component Bounds
• we can deduce bounds on the VC dimension of set-theoretic constructions

from that for their components

• for example R∪ = {R1 ∪ R2 | R1 ∈ R1 , R2 ∈ R2} and R∩ = {R1 ∩ R2 |
R1 ∈ R1 , R2 ∈ R2} both have VC dimension O(d) if the components have
VC dimension ≤ d

• more generally: Rf = {f(R1, . . . , Rk) | R1 ∈ R1, . . . , Rk ∈ Rk} has VC
dimension O(kd log k)

• a proof for the somewhat weaker bound O(kd log kd):

Let t be the VC dimension of (X, Rf ), and let Y ⊆ X be shattered by Rf

with |Y | = t. We have |Ri
Y | ≤ G(d, t) ≤ td, which implies:

2t = |Rf
Y | ≤

k∏
i=1

|Ri
Y | ≤ tkd
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We will show t < x log x where x = 2(kd + 1)/ log 2. Assume by contradic-
tion that t ≥ x log x. Then

2t

log t
≥ 2x log x

log t
≥ 2x log x

2 log x
= x = 2(kd + 1)

log 2

and thus t ≥ (kd + 1) log2 t and 2t ≥ tkd+1 > tkd, a contradiction.

ε-Nets
• a set N ⊆ X is an ε-net if every R ∈ R with P(R) ≥ ε contains one point

of N

• if (X, R) has VC dimension d, then there is an

m = O

(
d

ε
log d

ε
+ 1

ε
log 1

δ

)
such that a random sample of size m is an ε-net with probability ≥ 1 − δ

Proof: Let M and T be two i.i.d. sets of m samples each. Let E1 be the
event that M is not an ε-net and let E2 be the following event:

E2 : ∃R ∈ R : P(R) ≥ ε ∧ R ∩ M = ∅ ∧ |R ∩ T | ≥ εm

2

We have P(E1) ≤ 2P(E2) if m ≥ 8/ε: Let R′ ∈ R according to E1. Then

P(E2)
P(E1) = P(E1 ∩ E2)

P(E1) = P(E2 | E1) ≥ P(|T ∩ R′| ≥ εm/2)

≥ 1 − e−εm/8 ≥ 1
2

by the Chernoff bound.

Defining the event

E′
2 : ∃R ∈ R : R ∩ M = ∅ ∧ |R ∩ T | ≥ εm

2

we have P(E2) ≤ P(E′
2) ≤ (2m)d2−εm/2: Setting k = ⌈εm/2⌉, the proba-

bility for some R ∈ R to have R ∩ M = ∅ and |R ∩ T | ≥ k is at most:

P(M ∩ R = ∅ | |R ∩ (M ∪ T )| ≥ k) =
(2m−k

m

)(2m
m

) = (2m − k)!m!
(2m)!(m − k)!

≤ 2−εm/2

Since the |RM∪T | ≤ G(2m, d) ≤ (2m)d, we get the claimed inequality by
the union bound.
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