PACS Part 2, Lecture 7
PAC Learning

PAC = probably approximately correct

let’s say we want to learn an interval [a,b] based on samples from a
distribution D on R

we won’t be able to learn it exactly using a finite number of samples
one sample = a point & ~ D and the information whether x € [a, 1]

want measure of error of approximation of learned interval [c, d):

P(x € [a,b]Ale,d]) < e

optimum is € = 1 in general, based on which samples we see

but we can wish for an approximation error of € of the learned interval
with probability > 1 — § (Monte Carlo algorithm)

it turns out we only need O(% log %) samples to do just that

Sample Complexity

a candidate interval [¢, d] can be discarded if we sample an x € [a, b|A[c, d]

the number of samples to eliminate a single [¢, d] with P(z € [a,b]A[e, d]) >
€ with probability > 1 — ¢ can be bounded by m = %log%

application of the union bound gives m = %logg samples to eliminate k
such intervals

however, we want to eliminate all of them simultaneously

VC Dimension

VC = Vapnik—Chervonenkis

A range space is a pair (X, R) where X is a set and R is a set of subsets
of X.

If S C X, then (S, Rg) with Rg¢ = {RNS | R € R} is also a range space.
It is called the projection on S.

A set S C X is shattered by R if |Rg| = 2151,

The VC dimension of (X, R) is the maximum cardinality of a set S C X
that is shattered by R.

Example: X =R, R = {[a,b] | a,b € R} has VC dimension 2



e Example: X =R? R ={C C X | C is convex} has infinite VC dimension
(take n points on a circle)

o Example: X = {0,1}, R = {f: X — {0,1} | f is monotone} has VC
dimension n (take the n points with exactly one zero; shatter by doing the
AND of the never-zero variables)

Growth Function

d n
 G(d.n) =371 (7)
o If (X,R) is a range space of VC dimension d with |X| = n, then |R| <
G(n,d).
Proof: By induction on d and n. The base cases with d = 0 or n = 0 hold
since G(d,n) = 1 in this case. For the induction step, assume that the

claim holds for the pairs (d — 1,n — 1) and (d,n — 1). Choose some z € X
and consider the range spaces

Ri={R\{z} | ReR}
Ro={R\{z} | RU{z} e RAR\ {z} e R}
on the point set X \ {x}. We have |R| = |Ry| + |R2|. Further, the VC

dimension of (X \ {z},R1) is < d and that of (X \ {2}, R2) is < d—1. We
thus calculate:

R| = |Ri| +|Ra| <G(dyn—1)+G(d—1,n—1)
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Component Bounds

¢ we can deduce bounds on the VC dimension of set-theoretic constructions
from that for their components

o for example RY = {R{ URy | Ry € RY, Ry € R?*} and R" = {R1 N Ry |
Ry € R, Ry € R?} both have VC dimension O(d) if the components have
VC dimension < d

« more generally: Rf = {f(Ry,...,Ry) | R1 € R',..., Ry € R*} has VC
dimension O(kdlog k)

o a proof for the somewhat weaker bound O(kdlog kd):

Let t be the VC dimension of (X, R/), and let Y C X be shattered by R/
with Y| =¢. We have |R%| < G(d,t) < %, which implies:



We will show ¢ < zlogx where © = 2(kd + 1)/log2. Assume by contradic-
tion that ¢t > xlogx. Then

2t < 2x log x < 2xlog x o 2(kd+1)
logt = logt — 2logx log 2

and thus t > (kd + 1)logy t and 2! > tkd+1 > thd 5 contradiction.

e-Nets

o aset N C X is an e-net if every R € R with P(R) > ¢ contains one point
of N

o if (X,R) has VC dimension d, then there is an

d, d 1 1
m=0 (log + log>
€ e € o
such that a random sample of size m is an e-net with probability > 1 —§

Proof: Let M and T be two i.i.d. sets of m samples each. Let F; be the
event that M is not an e-net and let E5 be the following event:

Es: 3RER:IP’(R)25/\RDM=(Z)/\\RHT|2%

We have P(E;) < 2P(Es) if m > 8/e: Let R’ € R according to Ej. Then

P(E,) P(E,NEy) ,
) = By = P | B 2 BT AR 2 em/2)

1
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by the Chernoff bound.
Defining the event

By 3RER:RNM=0ARNT|> T

we have P(Ey) < P(E}) < (2m)?275™/2. Setting k = [em/2], the proba-
bility for some R € R to have RN M =0 and |[RNT| > k is at most:

B B (2":7;’“) _ (2m —k)!m!
P(MNR=0||RN(MUT)|>k) = ™) @m)im— k)

m

S 2—Em/2

Since the |Ryrur| < G(2m,d) < (2m)?, we get the claimed inequality by
the union bound.
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