PACS Part 2, Lecture 7

PAC Learning

- PAC = probably approximately correct
- let's say we want to learn an interval [a, b] based on samples from a distribution \mathcal{D} on \mathbb{R}
- we won't be able to learn it exactly using a finite number of samples
- one sample = a point $x \sim \mathcal{D}$ and the information whether $x \in [a, b]$
- want measure of error of approximation of learned interval [c, d]:

$$\mathbb{P}(x \in [a, b]\Delta[c, d]) < \varepsilon$$

- optimum is $\varepsilon = 1$ in general, based on which samples we see
- but we can wish for an approximation error of ε of the learned interval with probability $\geq 1 \delta$ (Monte Carlo algorithm)
- it turns out we only need $O(\frac{1}{\varepsilon}\log\frac{1}{\delta})$ samples to do just that

Sample Complexity

- a candidate interval [c, d] can be discarded if we sample an $x \in [a, b]\Delta[c, d]$
- the number of samples to eliminate a single [c, d] with $\mathbb{P}(x \in [a, b]\Delta[c, d]) \ge \varepsilon$ with probability $\ge 1 \delta$ can be bounded by $m = \frac{1}{\varepsilon} \log \frac{1}{\delta}$
- application of the union bound gives $m=\frac{1}{\varepsilon}\log\frac{k}{\delta}$ samples to eliminate k such intervals
- however, we want to eliminate *all* of them simultaneously

VC Dimension

- VC = Vapnik-Chervonenkis
- A range space is a pair (X, \mathcal{R}) where X is a set and \mathcal{R} is a set of subsets of X.
- If $S \subseteq X$, then (S, \mathcal{R}_S) with $\mathcal{R}_S = \{R \cap S \mid R \in \mathcal{R}\}$ is also a range space. It is called the *projection* on S.
- A set $S \subseteq X$ is shattened by \mathcal{R} if $|\mathcal{R}_S| = 2^{|S|}$.
- The VC dimension of (X, \mathcal{R}) is the maximum cardinality of a set $S \subseteq X$ that is shattered by \mathcal{R} .
- Example: $X = \mathbb{R}, \mathcal{R} = \{[a, b] \mid a, b \in \mathbb{R}\}$ has VC dimension 2

- Example: $X = \mathbb{R}^2$, $\mathcal{R} = \{C \subseteq X \mid C \text{ is convex}\}$ has infinite VC dimension (take *n* points on a circle)
- Example: $X = \{0, 1\}, \mathcal{R} = \{f \colon X \to \{0, 1\} \mid f \text{ is monotone}\}$ has VC dimension n (take the n points with exactly one zero; shatter by doing the AND of the never-zero variables)

Growth Function

- $\mathcal{G}(d,n) = \sum_{i=0}^{d} \binom{n}{i}$
- If (X, \mathcal{R}) is a range space of VC dimension d with |X| = n, then $|\mathcal{R}| \leq \mathcal{G}(n, d)$.

Proof: By induction on d and n. The base cases with d = 0 or n = 0 hold since $\mathcal{G}(d, n) = 1$ in this case. For the induction step, assume that the claim holds for the pairs (d - 1, n - 1) and (d, n - 1). Choose some $x \in X$ and consider the range spaces

$$\mathcal{R}_1 = \{R \setminus \{x\} \mid R \in \mathcal{R}\}$$
$$\mathcal{R}_2 = \{R \setminus \{x\} \mid R \cup \{x\} \in \mathcal{R} \land R \setminus \{x\} \in \mathcal{R}\}$$

on the point set $X \setminus \{x\}$. We have $|\mathcal{R}| = |\mathcal{R}_1| + |\mathcal{R}_2|$. Further, the VC dimension of $(X \setminus \{x\}, \mathcal{R}_1)$ is $\leq d$ and that of $(X \setminus \{x\}, \mathcal{R}_2)$ is $\leq d-1$. We thus calculate:

$$\begin{aligned} |\mathcal{R}| &= |\mathcal{R}_1| + |\mathcal{R}_2| \le \mathcal{G}(d, n-1) + \mathcal{G}(d-1, n-1) \\ &= \sum_{i=0}^d \binom{n-1}{i} + \sum_{i=0}^{d-1} \binom{n-1}{i} = \sum_{i=0}^d \binom{n}{i} = \mathcal{G}(d, n) \end{aligned}$$

Component Bounds

- we can deduce bounds on the VC dimension of set-theoretic constructions from that for their components
- for example $\mathcal{R}^{\cup} = \{R_1 \cup R_2 \mid R_1 \in \mathcal{R}^1, R_2 \in \mathcal{R}^2\}$ and $\mathcal{R}^{\cap} = \{R_1 \cap R_2 \mid R_1 \in \mathcal{R}^1, R_2 \in \mathcal{R}^2\}$ both have VC dimension O(d) if the components have VC dimension $\leq d$
- more generally: $\mathcal{R}^f = \{f(R_1, \dots, R_k) \mid R_1 \in \mathcal{R}^1, \dots, R_k \in \mathcal{R}^k\}$ has VC dimension $O(kd \log k)$
- a proof for the somewhat weaker bound $O(kd \log kd)$:

Let t be the VC dimension of (X, \mathcal{R}^f) , and let $Y \subseteq X$ be shattered by \mathcal{R}^f with |Y| = t. We have $|\mathcal{R}^i_Y| \leq \mathcal{G}(d, t) \leq t^d$, which implies:

$$2^t = |\mathcal{R}_Y^f| \le \prod_{i=1}^k |\mathcal{R}_Y^i| \le t^{kd}$$

We will show $t < x \log x$ where $x = 2(kd + 1)/\log 2$. Assume by contradiction that $t \ge x \log x$. Then

$$\frac{2t}{\log t} \ge \frac{2x\log x}{\log t} \ge \frac{2x\log x}{2\log x} = x = \frac{2(kd+1)}{\log 2}$$

and thus $t \ge (kd+1)\log_2 t$ and $2^t \ge t^{kd+1} > t^{kd}$, a contradiction.

ε -Nets

- a set $N \subseteq X$ is an ε -net if every $R \in \mathcal{R}$ with $\mathbb{P}(R) \ge \varepsilon$ contains one point of N
- if (X, \mathcal{R}) has VC dimension d, then there is an

$$m = O\left(\frac{d}{\varepsilon}\log\frac{d}{\varepsilon} + \frac{1}{\varepsilon}\log\frac{1}{\delta}\right)$$

such that a random sample of size m is an ε -net with probability $\geq 1 - \delta$

Proof: Let M and T be two i.i.d. sets of m samples each. Let E_1 be the event that M is not an ε -net and let E_2 be the following event:

$$E_2: \quad \exists R \in \mathcal{R} \colon \mathbb{P}(R) \ge \varepsilon \land R \cap M = \emptyset \land |R \cap T| \ge \frac{\varepsilon m}{2}$$

We have $\mathbb{P}(E_1) \leq 2\mathbb{P}(E_2)$ if $m \geq 8/\varepsilon$: Let $R' \in \mathcal{R}$ according to E_1 . Then

$$\frac{\mathbb{P}(E_2)}{\mathbb{P}(E_1)} = \frac{\mathbb{P}(E_1 \cap E_2)}{\mathbb{P}(E_1)} = \mathbb{P}(E_2 \mid E_1) \ge \mathbb{P}(|T \cap R'| \ge \varepsilon m/2)$$
$$\ge 1 - e^{-\varepsilon m/8} \ge \frac{1}{2}$$

by the Chernoff bound.

Defining the event

$$E_2': \quad \exists R \in \mathcal{R} \colon R \cap M = \emptyset \land |R \cap T| \ge \frac{\varepsilon m}{2}$$

we have $\mathbb{P}(E_2) \leq \mathbb{P}(E'_2) \leq (2m)^d 2^{-\varepsilon m/2}$: Setting $k = \lceil \varepsilon m/2 \rceil$, the probability for some $R \in \mathcal{R}$ to have $R \cap M = \emptyset$ and $|R \cap T| \geq k$ is at most:

$$\mathbb{P}(M \cap R = \emptyset \mid |R \cap (M \cup T)| \ge k) = \frac{\binom{2m-k}{m}}{\binom{2m}{m}} = \frac{(2m-k)!m!}{(2m)!(m-k)!} \le 2^{-\varepsilon m/2}$$

Since the $|\mathcal{R}_{M\cup T}| \leq \mathcal{G}(2m, d) \leq (2m)^d$, we get the claimed inequality by the union bound.