
PACS Part 2, Lecture 6
Entropy

• entropy = measure of randomness

• for a discrete random variable X:

H(X) = −
∑

x

P(X = x) log2 P(X = x)

• for a Bernoulli variable with parameter p:

H(p) = −p log2 p − (1 − p) log2(1 − p)

• the maximum is achieved at H(1/2) = 1

• continuous extension: H(0) = H(1) = 0

• intermediate value: H(1/4) ≈ 0.8113

• intuition: each Bernoulli try gives H(p) random bits

• uniform distribution on a set of size n: H(X) = log2 n

• if X and Y are independent, then H(X, Y ) = H(X) + H(Y )

• we have 2nH(q)

n+1 ≤
(

n
nq

)
≤ 2nH(q) if nq is an integer

Proof idea: The term
(

n
nq

)
qqn(1 − q)(1−q)n is dominant in the binomial

expansion of (q + (1 − q))n.

• in particular, if q > 1/2, then
(

n
⌊nq⌋

)
≥ 2nH(q)

n+1

Measure of Randomness
• one formalization of number of random bits extracted from a random

variable X: specify an extraction function Ext: Supp(X) → {0, 1}+

• we would want P(Ext(X) = y | |Ext(X)| = k) = 1/2|y| for every y ∈ {0, 1}k

whenever P(|Ext(X)| = k) > 0

• example: unbiased 8-sided die
map each of the numbers 0, 1, . . . , 7 to its binary representation of length 3

• example: unbiased 12-sided die

– for numbers 0, 1, . . . , 7, map to length-3 binary representations
– for numbers 8, 9, 10, 11, map to length-2 binary representations of

0, 1, 2, 3
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• If X is random variable with m equally probable possible values, then
there is an extraction function with E |Ext(X)| ≥ ⌊H(X)⌋ − 1.

Proof: If m is a power of 2, we use the binary representation. If not, we
split m into 2α and m − 2α with α = ⌊log2 m⌋. We show E |Ext(X)| ≥
⌊log2 m⌋ − 1 by induction. For the induction step, we calculate:

E |Ext(X)| ≥ 2α

m
α + m − 2α

m
(log2(m − 2α) − 1)

= α − m − 2α

m
(α − ⌊log2(m − 2α)⌋ + 1)

≥ α − 2β+1 − 1
2α + 2β+1 − 1(α − β + 1)

where β = ⌊log2(m − 2α)⌋ since m ≤ 2α + 2β+1 − 1. Using (2β+1 −
1)(2α−β−1 + 1) ≤ 2α + 2β+1 − 1, we get:

E |Ext(X)| ≥ α − 1
2α−β−1 + 1(α − β + 1) ≥ α − 1

• Let X ∼ Bern(p) with 0 < p < 1 and δ > 0. For sufficiently large n, we
have:

1. there is an extraction function on a sequence of n i.i.d. copies of X
that outputs at least (1 − δ)nH(p) bits in expectation.

2. the expected number of bits of any extraction function on a sequence
of n i.i.d. copies of X is at most nH(p).

Proof: To prove (1), assume wlog p > 1/2 and let Z be the number of
successes of the Bernoulli trials. All sequences of n trials with j successes
are equally probable. Conditioned on Z = j, we thus generate a uniform
distribution with

(
n
j

)
possible values. Using the previous result, setting

B = |Ext(X)|, we want to show

EB ≥
n∑

j=1
P(Z = j)

(⌊
log2

(
n

j

)⌋
− 1

)
≥ (1 − δ)nH(p)

for sufficiently large n.

We limit the sum to n(p − ε) ≤ j ≤ n(p + ε) and use
(

n
j

)
≥ 2nH(p+ε)

n+1 . For
the sum of the P(Z = j), we use the Chernoff bound. We thus get:

EB ≥
(

log2
2nH(p+ε)

n + 1 − 2
)
P

(
|Z − np| ≤ ε

p
np

)
≥ (nH(p + ε) − log2(n + 1) − 2)

(
1 − 2e−nε2/3p

)
This is ≥ (1 − δ)nH(p) for sufficiently large n.
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To prove (2), we note 2|Ext(x)|P(X = x) ≤ 1 and calculate

EB =
∑

x

P(X = x)|Ext(x)|

≤
∑

x

P(X = x) log2
1

P(X = x) = H(X) = nH(p)

Compression
• entropy can also be used as a measurement for compressibility

• example: two i.i.d. Bernoulli trials with p = 3/4

– If two successes: code as 0.
– If first is a success and the second a fail: code as 10.
– If first is a fail and the second a success: code as 110.
– If two fails: code as 111.

The expected number of bits in the code is 27/16 < 2.

• More generally: Let X ∼ Bern(p) with 0 < p < 1 and δ > 0. For
sufficiently large n, we have:

1. there is a compression function on a sequence of n i.i.d. copies of X
that outputs at most (1 + δ)nH(p) bits in expectation.

2. the expected number of bits of any compression function on a sequence
of n i.i.d. copies of X is at least (1 − δ)nH(p).
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