PACS Part 2, Lecture 6

Entropy

entropy = measure of randomness

for a discrete random variable X:

H(X) ==Y P(X =z)log, P(X = z)

for a Bernoulli variable with parameter p:
H(p) = —plogyp — (1 — p)logy(1 — p)

the maximum is achieved at H(1/2) =1

continuous extension: H(0) = H(1) =0

intermediate value: H(1/4) ~ 0.8113

intuition: each Bernoulli try gives H(p) random bits
uniform distribution on a set of size n: H(X) = logy,n

if X and Y are independent, then H(X,Y) = H(X) + H(Y)

2D (:‘q) < 2"H(9) if ng is an integer

we have T <

Proof idea: The term (:q) ¢"(1 — ¢)'=9" is dominant in the binomial
expansion of (¢ + (1 —¢q))™.
onH ()

in particular, if ¢ > 1/2, then (L:‘IJ) > S

Measure of Randomness

one formalization of number of random bits extracted from a random
variable X: specify an extraction function Ext: Supp(X) — {0,1}*

we would want P(Ext(X) = y | [Ext(X)| = k) = 1/2¥! for every y € {0,1}*
whenever P(|Ext(X)| =k) >0

example: unbiased 8-sided die
map each of the numbers 0,1,...,7 to its binary representation of length 3

example: unbiased 12-sided die

— for numbers 0, 1,...,7, map to length-3 binary representations
— for numbers §8,9,10,11, map to length-2 binary representations of
0,1,2,3



e If X is random variable with m equally probable possible values, then
there is an extraction function with E [Ext(X)| > |H(X)] — 1.

Proof: If m is a power of 2, we use the binary representation. If not, we
split m into 2% and m — 2% with a = [log, m|. We show E |Ext(X)| >
|log, m| — 1 by induction. For the induction step, we calculate:

le%

2
E |[Ext(X)]| > —a+
m

m — 2%

m — 2¢

(logs (m — 2%) — 1)

(o — [logy(m —2%)] +1)
26+ 1
=T Qa B

(a=pB+1)

where 8 = |logy(m — 2%)] since m < 2% + 281 — 1. Using (2°+! —
1207871 +1) <29 + 28+ — 1 we get:

1

(a=F+1)>a-1

e Let X ~ Bern(p) with 0 < p < 1 and 6 > 0. For sufficiently large n, we
have:

1. there is an extraction function on a sequence of n i.i.d. copies of X
that outputs at least (1 — d)nH (p) bits in expectation.

2. the expected number of bits of any extraction function on a sequence
of n i.i.d. copies of X is at most nH (p).

Proof: To prove (1), assume wlog p > 1/2 and let Z be the number of
successes of the Bernoulli trials. All sequences of n trials with j successes
are equally probable. Conditioned on Z = j, we thus generate a uniform
distribution with (?) possible values. Using the previous result, setting
B = |Ext(X)]|, we want to show

EB > ip(z =) Qlog2 (?)J — 1> > (1= 06)nH (p)

for sufficiently large n.

We limit the sum to n(p —¢) < j < n(p+¢) and use (?) > 2"51);5)

the sum of the P(Z = j), we use the Chernoff bound. We thus get:

EB 1 gritere) 2|1P||Z £
> - — — < —
> <0g2 o > ( np| < pnp)

. For

> (nH(p+e¢)—logy(n+1) —2) (1 — 26—"62/317)

This is > (1 — 0)nH (p) for sufficiently large n.



To prove (2), we note 2/Px*@)IP(X = z) < 1 and calculate
EB =) P(X = z)[Ext(z)|

< ZP(X :x)logQ}P(% = H(X) =nH(p)

= a’j)
Compression
e entropy can also be used as a measurement for compressibility
o example: two i.i.d. Bernoulli trials with p = 3/4

— If two successes: code as 0.

— If first is a success and the second a fail: code as 10.
— If first is a fail and the second a success: code as 110.
If two fails: code as 111.

The expected number of bits in the code is 27/16 < 2.

o More generally: Let X ~ Bern(p) with 0 < p < 1 and § > 0. For
sufficiently large n, we have:

1. there is a compression function on a sequence of n i.i.d. copies of X
that outputs at most (1 4 §)nH (p) bits in expectation.

2. the expected number of bits of any compression function on a sequence
of n i.i.d. copies of X is at least (1 — §)nH (p).
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