
PACS Part 2, Lecture 5
The Normal Distribution

• the normal distribution’s density is ϕ(x) = 1√
2π
e−x2/2

• setting I =
∫∞

−∞ e−x2/2dx, we have I2 =
∫
R2 e

−∥x∥2/2dx by Fubini’s theo-
rem

• using the substitution ψ(r, α) = (r cosα, r sinα), we get

I2 =
∫ ∞

0

∫ 2π

0
e−r2/2|detDψ(r, α)|dαdr =

∫ ∞

0

∫ 2π

0
e−r2/2rdαdr = 2π

• thus I =
√

2π, and ϕ is indeed the density of a probability measure

• by symmetry of ϕ around 0, we have EX = 0

• for the variance, we have

Var(X) =
∫ ∞

−∞
x2e−x2/2dx = 1√

2π

∫ ∞

−∞
e−x2/2dx− 1√

2π
xe−x2/2

∣∣∣∣∞
−∞

= 1

using integration by parts

• this justifies the notation N (0, 1) for the standard normal distribution with
mean µ = 0 and standard deviation σ =

√
Var(X) = 1

• the general form of the normal distribution N (µ, σ2) with mean µ and
standard deviation σ has density 1√

2πσ
e−((x−µ)/σ)2/2

• if X ∼ N (µ, σ2), then setting Z = (X − µ)/σ gives

P(Z ≤ z) = P(X ≤ σz + µ) = 1√
2πσ

∫ σz+µ

−∞
e−((t−µ)/σ)2/2dt

= 1√
2π

∫ z

−∞
e−x2/2dx

• hence Z ∼ N (0, 1), which means that EX = σEZ + µ = µ and Var(X) =
Var(σZ) = σ2Var(Z) = σ2

Chernoff Bound for the Normal Distribution
• the normal distribution is tightly concentrated around its mean, which can

be shown by a Chernoff bound

• the MGF of X ∼ N (µ, σ2) is:

MX(t) = EetX = et2σ2/2+µt
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• using the MGF, we can show that the sum of two independent normally
distributed random variables is itself normally distributed: X + Y ∼
N (µ1 +µ2, σ

2
1 +σ2

2) if X ∼ N (µ1, σ1) and Y ∼ N (µ2, σ
2
2) are independent

• applying the Chernoff bound twice with the optimal parameter t = a and
the union bound once, we get

P
(∣∣∣∣X − µ

σ

∣∣∣∣ ≥ a

)
≤ 2e−a2/2

if X ∼ N (µ, σ2)

Central Limit Theorem
• the central limit theorem states that the averages of i.i.d. random variables

are approximately normally distributed as the number of samples grows

• it does not claim that random variables themselves are normally distributed

• let X1, X2, . . . be i.i.d. with finite expected value µ and finite variance σ2,
and set X̄n =

∑n
i=1 Xn/n

• the law of large numbers states that X̄n → µ almost surely

• the central limit theorem is a more precise version:

lim
n→∞

P
(
X̄n − µ

σ/
√
n

∈ [a, b)
)

= Φ(b) − Φ(a)

for all a ≤ b where Φ is the cumulative distribution function of N (0, 1)

• Let us check convergence of the MGFs: Set Zi = (Xi − µ)/σ and Yn =∑n
i=1 Zi/

√
n. We have EetZi/

√
n = MZ(t/

√
n) where MZ(t) = MZi

(t). It
follows that:

MYn(t) =
(
MZ(t/

√
n)
)n

We want to show that MYn
(t) → et2/2. For that, we set L(t) = logMZ(t)

and show, using L’Hôpital’s rule, that:

lim
n→∞

nL(t/
√
n) = lim

n→∞

−L′(t/
√
n)n−3/2t/2

−n−2 = lim
n→∞

L′(t/
√
n)t

2n−1/2

= lim
n→∞

−L′′(t/
√
n)n−3/2t2/2

−n−3/2 = lim
n→∞

L′′(t/
√
n) t

2

2 = t2

2

where we used L(0) = 0, L′(0) = EZi = 0, and L′′(0) = EZ2
i = 1.

Example: Opinion Polls
• assume yes/no opinions that are i.i.d. Bernoulli variables with parameter p
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• we are looking for a confidence interval [p̃−δ, p̃+δ] with P(p ∈ [p̃−δ, p̃+δ]) ≥
1 − γ

• let’s choose γ = δ = 0.05

• how many samples do we need?

• often-made but potentially dangerous assumption: X̄n is normally dis-
tributed with mean EXi = p and variance Var(Xi)/n = p(1 − p)/n

• we are then looking for n such that

P
(∣∣X̄n − p

∣∣ ≥ δ
)

= 2
(

1 − Φ
( √

nδ√
p(1 − p)

))
≤ γ = 0.05

• looking up the corresponding argument of Φ, we have to solve

δ
√
n√

p(1 − p)
≥ 1.96,

that is,
n ≥ 385 ≥

(
20 · 1.96 ·

√
p(1 − p)

)2

suffices, where we used p(1 − p) ≤ 1/4

Maximum-Likelihood Estimators
• given a parameterized family of probability distributions and a set of

i.i.d. samples, we seek to estimate the parameters

• in case of a discrete random variable X, the maximum-likelihood estimator
(MLE) is the parameter θ that maximizes

n∏
i=1

Pθ(X = xi)

• in case of a continuous random variable X, it maximizes
n∏

i=1
fθ(xi)

where fθ is the probability density with parameter θ

• example: for a Bernoulli random variable, the MLE of the parameter p is
p = k/n where k is the number of successes among the n samples

• example: for a normal distribution, the MLE of the parameters µ and σ
are µ = 1

n

∑n
i=1 xi and σ2 = 1

n

∑n
i=1(xi − µ)2
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• every estimator can be itself seen as a random variable when fixing the
ground-truth probability distribution

• an estimator Θn that considers n samples is unbiased if EΘn = θ where θ
is the true value of the estimated parameter

• it is asymptotically unbiased if EΘn → θ as n → ∞

• the sample mean Mn = 1
n

∑n
i=1 Xi is always an unbiased estimated of the

expected value of the Xi

• the sample variance S2
n = 1

n

∑n
i=1(Xi −Mn)2 is only asymptotically unbi-

ased:
ES2

n = n− 1
n

Var(Xi)

Expectation–Maximization Algorithm
• we seek to estimate the parameters θ = (γ, µ1, µ2, σ

2
1 , σ

2
2) of a mixture of

two normal distributions

• a sample is chosen according to N (µ1, σ
2
1) with probability γ, and according

to N (µ2, σ
2
2) with probability 1 − γ.

• analytically calculating the MLE in infeasible

• the Expectation–Maximization (EM) algorithm for this problem iterates
the Expectation step followed by the Maximization step:

1. for every sample xi, compute the conditional probabilities p1(xi) and
p2(xi) that it was sampled according to the first or the second normal
distribution given, using the current parameter values

2. update the parameters µj and σj that maximize the expected likeli-
hood according to the pj(xi), and γ to the average of the p1(xi)

• this algorithm is not guaranteed to convergence to the global maximum,
but it will approach a local maximum:

L(x, γt, µt
1, µ

t
2, σ

t
1, σ

t
2) ≤ L(x, γt+1, µt

1, µ
t
2, σ

t
1, σ

t
2)

≤ L(x, γt+1, µt+1
1 , µt+1

2 , σt+1
1 , σt+1

2 )
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