
PACS Part 2, Lecture 3
Probabilistic Method

• show existence of objects satisfying property E by showing P(E) > 0

First Moment
• show satisfiability of X ≥ µ by showing EX ≥ µ

• uses the inequality P(X ≥ EX) > 0

• Example: large cuts

Let G = (V, E) be an undirected graph with m = |E|. Then there is a cut
of G with value at least m/2.

Proof: We divide the vertices of V into two disjoint sets A and B, assigning
each vertex to A with probability 1/2, independently of the other choices.
Then, defining Xe = 1 iff edge e ∈ E is in the cut defined by A and B, we
have

EC(A, B) = E
∑
e∈E

Xe = m

2

for the expected value of the cut.

• Transforming this into an algorithm for finding a large cut, define p =
P(C(A, B) ≥ m/2) and note C(A, B) ≤ m to get

m

2 = E
∑
e∈E

Xe ≤ (1 − p)
(m

2 − 1
)

+ pm

which implies p ≥ 1/(1 + m/2). This gives a Las Vegas algorithm with an
expected number of iterations of O(m).

• We can derandomize this algorithm by fixing any enumeration v1, . . . , vn

of the vertices. Letting xi denote the choice of set A or B for vertex vi,
we show that it is possible to achieve

m

2 ≤ E[C(A, B) | x1, . . . , xk] ≤ E[C(A, B) | x1, . . . , xk+1]

which follows from the law of total expectation conditioning on the value
of xk+1. The base case is E[C(A, B) | x1] = EC(A, B) = m/2. To make
the choice xk+1 that maximizes the conditional expectation, we note that
it is equal to the number of edges in the cut between vertices among
v1, . . . , vk+1 plus half the remaining edges. This can be computed in linear
time.
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Sample and Modify
• sometimes it is not sufficient to make all choices randomly, we are thus led

to modifying the random sample to satisfy the specification

• Example: independent sets

If G = (V, E) is a connected undirected graph with n vertices and m ≥ n/2
edges, then G has an independent set of size ≥ n2/4m.

Proof: Let d = 2m/n be the average degree of vertices. First, select each
vertex with probability 1/d. Then remove one vertex for each induced
edge.

Let X be the number of selected vertices and Y the number of induced
edges. Then:

E(X − Y ) = EX − EY = n

d
− n

2d
= n

2d
= n2

4m

Second Moment
• using Chebyshev’s inequality, we will show that p = n−2/3 is a threshold

function for the occurrence of cliques of size 4 in Erdős–Rényi graphs

• Let C1, . . . , C(n
4) be an enumeration of all possible 4-cliques and define the

indicator variable Xi = 1 iff Ci is a clique.

• Set X =
∑(n

4)
i=1 Xi.

• First, let p = o(n−2/3). Then

P(X ≥ 1) ≤ EX =
(

n

4

)
p6 = O(n4p6) = o(1)

as n → ∞.

• Now let p = ω(n−2/3). We have

Var(X) =
∑

i

Var(Xi) +
∑
i ̸=j

Cov(Xi, Xj) ≤ EX + Cov(Xi, Xj)

since the Xi are indicator variables and thus Var(Xi) ≤ EX2
i = EXi.

Depending on the number |Ci ∩ Cj | of vertices in the intersection of the
potential cliques, we either have Cov(Xi, Xj) = 0 (if it is 0 or 1) or a
positive term (if it is 2 or 3). Collecting the terms, we have:

Var(X) ≤
(

n

4

)
p6 +

(
n

6

)(
6

2; 2; 2

)
p11 +

(
n

5

)(
5

3; 1; 1

)
p9

Compared to (EX)2 = O(n8p12), we have:

Var(X) = o(n8p12) = o((EX)2)
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But this implies

P(X = 0) ≤ P(|X − EX| ≥ EX) ≤ Var(X)
(EX)2 = o(1)

as n → ∞.

Lovász Local Lemma
• if we can bound the probabilities of bad events E1, . . . , En individually,

then we can use the union bound to bound the probability of none of them
occurring

• however, if
∑n

i=1 P(Ei) ≥ 1, then this doesn’t give a meaningful bound

• if the Ei are mutually independent, then it suffices to have the very weak
bound P(Ei) < 1 to conclude

P

(
n⋂

i=1
Ēi

)
=

n∏
i=1

(1 − P(Ei)) > 0

• this can be generalized to the case of limited dependence

• Definition: Ei is mutually independent of the set {Ej | j ∈ J} of events if:

∀I ⊆ J : P

Ei |
⋂
j∈I

Ej

 = P(Ei)

• Definition: Let E1, . . . , En be events. A dependency graph of the events
is a graph G = ([n], E) such that Ei is mutually independent of the set
{Ej | (i, j) ̸∈ E}.

• Lovász Local Lemma:

Let E1, . . . , En be events and a dependency graph G such that:

1. P(Ei) ≤ p for all i
2. the maximum vertex degree of G is at most d
3. 4dp ≤ 1

Then P(
⋂n

i=1 Ēi) > 0.

• Example: k-SAT

If all variables appear in at most T = 2k/4k clauses, then the formula is
satisfiable.

Proof: Assign truth values uniformly i.i.d. Let Ei be the event that clause
i is not satisfied. Then P(Ei) = 2−k. By the pigeonhole principle, the
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maximum degree of G is at most d ≤ kT ≤ 2k/4. We verify:

4dp ≤ 42k

4 2−k = 1

An application of the local lemma thus concludes the proof.

• Proof of the local lemma: We prove by induction on 0 ≤ s ≤ n − 1 that

P

Ek |
⋂
j∈S

Ēj

 = P(Ek | FS) ≤ 2p

for all S ⊆ [n] and k ∈ [n]\S. The lemma then follows: Setting Si = [i−1],
we get

P

(
n⋂

i=1
Ēi

)
=

n∏
i=1

P(Ēi | FSi
) ≥

n∏
i=1

(1 − 2p) > 0

The base case s = 0 of the induction is just assumption 1.

For the induction step, define S1 = {j ∈ S | (k, j) ∈ E} and S2 = S \ S1.
If S1 = ∅, then the events are mutually exclusive and the inequality follows
from assumption 1. If S1 ̸= ∅, then

P(Ek | FS) = P(Ek ∩ FS)
P(FS) = P(Ek ∩ FS1 | FS2)

P(FS1 | FS2)

since FS = FS1 ∩ FS2 . By the definition of S2 and assumption 1, we can
bound the numerator by P(Ek) ≤ p. By applying the induction hypothesis
to P(Ei | FS2), we can bound the denominator by

P(FS1 | FS2) ≥ 1 −
∑
i∈S1

P(Ei | FS2) ≥ 1 − 2pd ≥ 1
2

using assumptions 2 and 3. This concludes the induction step and the
proof of the lemma.
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