PACS Part 2, Lecture 3

Probabilistic Method
« show existence of objects satisfying property E by showing P(E) > 0

First Moment
o show satisfiability of X > u by showing EX > u
o uses the inequality P(X > EX) >0
e Example: large cuts

Let G = (V, E) be an undirected graph with m = |E|. Then there is a cut
of G with value at least m/2.

Proof: We divide the vertices of V' into two disjoint sets A and B, assigning
each vertex to A with probability 1/2; independently of the other choices.
Then, defining X, = 1 iff edge e € E is in the cut defined by A and B, we
have m
EC(A,B) =E X =—
(4, B) ; 5

for the expected value of the cut.

o Transforming this into an algorithm for finding a large cut, define p =
P(C(A, B) > m/2) and note C(A, B) < m to get
m m
T-EY X.<(1-p) (5—1) +pm
eElR
which implies p > 1/(1 + m/2). This gives a Las Vegas algorithm with an
expected number of iterations of O(m).

e We can derandomize this algorithm by fixing any enumeration vy, ..., v,
of the vertices. Letting z; denote the choice of set A or B for vertex v,
we show that it is possible to achieve

% <E[C(A,B) | z1,...,21) <E[C(A, B) | 21, ..., %s1]
which follows from the law of total expectation conditioning on the value
of zi4+1. The base case is E[C(A4, B) | 1] = EC(A, B) = m/2. To make
the choice z; that maximizes the conditional expectation, we note that
it is equal to the number of edges in the cut between vertices among
V1,...,Vks1 plus half the remaining edges. This can be computed in linear
time.



Sample and Modify

o sometimes it is not sufficient to make all choices randomly, we are thus led
to modifying the random sample to satisfy the specification

o Example: independent sets

If G = (V,E) is a connected undirected graph with n vertices and m > n/2
edges, then G has an independent set of size > n?/4m.

Proof: Let d = 2m/n be the average degree of vertices. First, select each
vertex with probability 1/d. Then remove one vertex for each induced
edge.

Let X be the number of selected vertices and Y the number of induced

edges. Then:

E(X —Y)=EX —EY =

Second Moment

« using Chebyshev’s inequality, we will show that p = n=2/3 is a threshold
function for the occurrence of cliques of size 4 in Erdés—Rényi graphs

e Let Cy,...,C " be an enumeration of all possible 4-cliques and define the
indicator variable X; = 1 iff C; is a clique.

. Set x =50 x.

o First, let p = o(n=2/3). Then

P(X > 1) <EX = (Z)pﬁ — 0(n'p®) = o(1)

as n — oQ.
« Now let p = w(n=2/3). We have
Var(X) =Y Var(X;) + Y Cov(X;, X;) < EX + Cov(X;, X;)
i i#j

since the X; are indicator variables and thus Var(X;) < EX? = EX;.
Depending on the number |C; N C;| of vertices in the intersection of the
potential cliques, we either have Cov(X;,X;) = 0 (if it is 0 or 1) or a
positive term (if it is 2 or 3). Collecting the terms, we have:

Ve = (DPG i (Z) (2;2;2);)11 i (g) (3;?; 1)p9

Compared to (EX)? = O(n®p'?), we have:
Var(X) = o(n®p'?) = o((EX)?)



But this implies

B Var(X)
P(X = 0) < B(X —EX| 2 BX) < s = o(1)

as 1 — oQ.

Lovasz Local Lemma

if we can bound the probabilities of bad events E,..., E, individually,
then we can use the union bound to bound the probability of none of them
occurring

however, if Y7 | P(E;) > 1, then this doesn’t give a meaningful bound

if the F; are mutually independent, then it suffices to have the very weak
bound P(E;) < 1 to conclude

P <ﬂ E) = H(1 —P(E;)) >0
i=1 i=1
this can be generalized to the case of limited dependence

Definition: E; is mutually independent of the set {E; | j € J} of events if:

VICJ: P(E|()E|=PE)
Jjel

Definition: Let F1, ..., E, be events. A dependency graph of the events
is a graph G = ([n], F) such that E; is mutually independent of the set

{E;|(i,j) ¢ E}.
Lovasz Local Lemma:

Let Eq,..., E, be events and a dependency graph G such that:

1. P(E;) < p for all i
2. the maximum vertex degree of G is at most d
3. 4dp <1

Then P(N_, E;) > 0.
Example: k-SAT

If all variables appear in at most T = 2% /4k clauses, then the formula is
satisfiable.

Proof: Assign truth values uniformly i.i.d. Let E; be the event that clause
i is not satisfied. Then P(E;) = 27%. By the pigeonhole principle, the



maximum degree of G is at most d < kT < ok /4. We verify:

2k
4dp < 4Z2*’“ =1

An application of the local lemma thus concludes the proof.

Proof of the local lemma: We prove by induction on 0 < s < n — 1 that

P|Ex| () E;| =P(Ex|Fs) <2p
jeSs

for all S C [n] and k € [n]\S. The lemma then follows: Setting S; = [i —1],

we get
]P’(ﬂEi>_ P(E; | Fs,) H1—2p
=1 =1

The base case s = 0 of the induction is just assumption 1.

For the induction step, define S; = {j € S| (k,j) € E} and Sy = S\ S1.
If S; = (0, then the events are mutually exclusive and the inequality follows
from assumption 1. If Sy # 0, then

P(EkﬂFs) P(Ek’nFSI |FSQ)

P(Ey | Fs) = P(Fs) - P(Fs, | Fs,)

since Fg = Fg, N Fgs,. By the definition of Sy and assumption 1, we can
bound the numerator by P(Ey) < p. By applying the induction hypothesis
to P(E; | Fs,), we can bound the denominator by

P(Fs, | Fs,) > 1= > P(E; | Fs,) > 1—2pd >
€S,

N | =

using assumptions 2 and 3. This concludes the induction step and the
proof of the lemma.
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