PACS Part 2, Lecture 2

Moment-Generating Functions

Definition: My (t) = Eet*

the expected value always exists for ¢ = 0, but is not guaranteed to exist
for other ¢

if it does exist in a neighborhood of t = 0, then we have the following
formula, which justifies the name:

Mx(t)=>" —EX"
n=0
in this case, the MGF uniquely determines the distribution of X
Bernoulli: Mx (t) =1 — p + pe
Geometric: Mx (t) = pet /(1 — (1 — p)e!) for t < log ﬁ
if X and Y are independent, then Mx .y = Mx - My

Chernoff Bounds

the general form P(X > a) = P(e!X > ') < Ee!X /e!® follows from
Markov’s inequality

the parameter ¢ > 0 is free, so can be optimized upon

most often used for sums of independent Bernoulli trials X = >1" | X,
with p; = EX; and y =EX

Upper tail bound: P(X > (14 0)u) < e /3 for 0 < 5 < 1

Proof: general Chernoff bound with ¢ = log(1 + ¢) and then show e°/(1 +
§)(1+9) < e B for0< <1

Lower tail bound: P(X < (1 —0)u) < e M2 for 0 <6< 1

Proof: general Chernoff bound with ¢ = log(1 — §) and then show e~ /(1 —
5)(1_5) < e 2 for0< 5 <1

Combined tail bound: P(|X — p| > du) < 2e=15°/3
Application: Parameter estimation

Let us take n DNA samples and test them for the presence of a certain
mutation. We observe X = pn mutations among the samples. Assuming
that the presence of the mutation is i.i.d. for each sample, we seek to
estimate the real probability p of having the mutation. We would want a
confidence interval of the form P(|p — p| < ¢) > 1 — v. Using the Chernoff



bound, we can estimate the error as P(|p — p| > §) = P(|np — X| > %np) <
26—np62/3p2 < 26—n62/3 =7.

Hoeffding bound: Replaces the Bernoulli assumption by a boundedness
assumption. If a < X; <b and EX; = u/n for all ¢, then:

P(IX — | > §) < 2e720"/n(b=e)’

Balls into Bins

Basic setup: We throw m balls into n bins, independently and uniformly.
Example: Birthday paradox

Let us take m = 30 people and n = 365 possible birthdays. The probability
that none of the 30 people have a common birthday is:

7ﬁ1 1 J "ﬁl —j/n _ (m — 1)m —-m?2/2n
o 1 e = exp 5 ~ e

=1

To get a constant probability of two people sharing a birthday, it thus
suffices to choose m = Q(y/n).

Poisson approximation: The probability of a given bin having r balls is:

£ (-0 -

In other words, it is approximately a Poisson random variable with param-
eter u = m/n.

We make an error when assuming that the number of balls in every bin is
i.i.d. Poisson with parameter u = m/n, but sometimes that error is not
too big.

Denote by Xi,..., X, the loads of each bin in the exact case and by
Y1,...,Y, the loads of each bin in the Poisson case. Then, for every
nonnegative function f we have:

]Ef(X17~-~,Xn) Se\/%Ef(YlaaYn)

The proof uses the law of total probability using the fact that the conditional
distribution of (Y1,...,Y,) under the condition ) ., ¥; = m is equal to
the distribution of (X7, ..., X,).

The special case of an indicator function f is particularly important.



Power of Two Choices

e Question: What is the maximum load of a bin if m = n?
« In the basic setup, it is at least Q(logn/loglogn) with high probability.

Proof: We first work in the Poisson case. The probability that a bin has
load at least M =logn/loglogn is at least 1/eM!. Thus, the probability
that all bins have load < M is at most:

1 n
—n/eM!
P= (1 eM!) =¢

We verify that, for sufficiently large n, we have log M! < Mlog M +
logM < logn — logn/loglogn, and hence M! < n/2elogn and p <
1/n?%. Transferring this to the exact case, we get that the probability of a
maximum load is at most e/n*/? < 1/n.

e Next we study d-balanced allocations: Each ball samples d possible bins
and is placed in the bin among them with the lowest load. The classical
setup is d = 1.

¢ The maximum load in with d-balanced allocations with d > 2 is at most
O(loglogn) with high probability.

Proof: Let h(t) be the height of ball ¢ in its bin. Let v;(¢) be the number of
bins with lead at least i after ¢ throws, p;(¢) the number of balls of height
at least i after ¢ throws. We have v;(t) < p;(t). We want to find 3; such
that v;(n) < B; with high probability and 5; < 1 for some j = O(loglogn).

Let &; be the event v;(n) < ;. Let Y;(t) be the following indicator variable:
Whatever the bin choices w1, ...wy_1 in the first ¢ — 1 throws, we have

B4
P(Y;(t) = 1 | Wi, .- ,wt_l) S ;2
since for h(t) > i + 1 to hold, all d samples need to be taken from the at
most (3; suitable bins out of the n bins. To keep one power of n, we set
Bir1 = 28¢/n4"1 and initialize 8, = n/4. With this initialization, we have
P(&) = 1.
By the law of total probability, we have P (3>, Y;(t)>k) <
P (Y i, Z¢ > k) where the Z; are i.i.d. Bernoulli trials with success pa-
rameter p; = 3¢/n?. The event & implies Y, Y;(t) = pir1(n) > viy1(n),
and thus

P>V, Z > 2np;) < e pin/3 1




by the Chernoff bound if p;n > 6logn. This then implies P(=&; 1) <
P(—&;) + 1/n?, i.e., & holds with high probability.

The condition p;n > 6logn restricts i to be O(loglogn) since 5;14 < n/2d1
as long as it is true. Let ¢* be the smallest value that violates the condition.
It is 8= = O(logn). One can prove that P(v;«43(n) > 1) = O(1/n) by
another Chernoff bound and the union bound.

But then, with high probability, there is no bin with load higher than
i* 4+ 3 = O(loglogn).
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