
PACS Part 2, Lecture 2
Moment-Generating Functions

• Definition: MX(t) = EetX

• the expected value always exists for t = 0, but is not guaranteed to exist
for other t

• if it does exist in a neighborhood of t = 0, then we have the following
formula, which justifies the name:

MX(t) =
∞∑

n=0

tn

n!EXn

• in this case, the MGF uniquely determines the distribution of X

• Bernoulli: MX(t) = 1 − p + pet

• Geometric: MX(t) = pet/(1 − (1 − p)et) for t < log 1
1−p

• if X and Y are independent, then MX+Y = MX · MY

Chernoff Bounds
• the general form P(X ≥ a) = P(etX ≥ eta) ≤ EetX/eta follows from

Markov’s inequality

• the parameter t > 0 is free, so can be optimized upon

• most often used for sums of independent Bernoulli trials X =
∑n

i=1 Xi

with pi = EXi and µ = EX

• Upper tail bound: P(X ≥ (1 + δ)µ) ≤ e−µδ2/3 for 0 < δ < 1

Proof: general Chernoff bound with t = log(1 + δ) and then show eδ/(1 +
δ)(1+δ) ≤ e−δ2/3 for 0 < δ < 1

• Lower tail bound: P(X ≤ (1 − δ)µ) ≤ e−µδ2/2 for 0 < δ < 1

Proof: general Chernoff bound with t = log(1 − δ) and then show e−δ/(1 −
δ)(1−δ) ≤ e−δ2/2 for 0 < δ < 1

• Combined tail bound: P(|X − µ| ≥ δµ) ≤ 2e−µδ2/3

• Application: Parameter estimation

Let us take n DNA samples and test them for the presence of a certain
mutation. We observe X = p̃n mutations among the samples. Assuming
that the presence of the mutation is i.i.d. for each sample, we seek to
estimate the real probability p of having the mutation. We would want a
confidence interval of the form P(|p − p̃| ≤ δ) ≥ 1 − γ. Using the Chernoff
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bound, we can estimate the error as P(|p − p̃| ≥ δ) = P(|np − X| ≥ δ
p np) ≤

2e−npδ2/3p2 ≤ 2e−nδ2/3 = γ.

• Hoeffding bound: Replaces the Bernoulli assumption by a boundedness
assumption. If a ≤ Xi ≤ b and EXi = µ/n for all i, then:

P(|X − µ| ≥ δ) ≤ 2e−2δ2/n(b−a)2

Balls into Bins
• Basic setup: We throw m balls into n bins, independently and uniformly.

• Example: Birthday paradox

Let us take m = 30 people and n = 365 possible birthdays. The probability
that none of the 30 people have a common birthday is:

m−1∏
j=1

(
1 − j

n

)
≈

m−1∏
j=1

e−j/n = exp
(

− (m − 1)m
2n

)
≈ e−m2/2n

To get a constant probability of two people sharing a birthday, it thus
suffices to choose m = Ω(

√
n).

• Poisson approximation: The probability of a given bin having r balls is:(
m

r

) (
1
n

)r (
1 − 1

n

)m−r

≈ e−m/n(m/n)r

r!

In other words, it is approximately a Poisson random variable with param-
eter µ = m/n.

• We make an error when assuming that the number of balls in every bin is
i.i.d. Poisson with parameter µ = m/n, but sometimes that error is not
too big.

• Denote by X1, . . . , Xn the loads of each bin in the exact case and by
Y1, . . . , Yn the loads of each bin in the Poisson case. Then, for every
nonnegative function f we have:

Ef(X1, . . . , Xn) ≤ e
√

mEf(Y1, . . . , Yn)

• The proof uses the law of total probability using the fact that the conditional
distribution of (Y1, . . . , Yn) under the condition

∑n
i=1 Yi = m is equal to

the distribution of (X1, . . . , Xn).

• The special case of an indicator function f is particularly important.
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Power of Two Choices
• Question: What is the maximum load of a bin if m = n?

• In the basic setup, it is at least Ω(log n/ log log n) with high probability.

Proof: We first work in the Poisson case. The probability that a bin has
load at least M = log n/ log log n is at least 1/eM !. Thus, the probability
that all bins have load < M is at most:

p =
(

1 − 1
eM !

)n

≤ e−n/eM !

We verify that, for sufficiently large n, we have log M ! ≤ M log M +
log M ≤ log n − log n/ log log n, and hence M ! ≤ n/2e log n and p ≤
1/n2. Transferring this to the exact case, we get that the probability of a
maximum load is at most e/n3/2 ≤ 1/n.

• Next we study d-balanced allocations: Each ball samples d possible bins
and is placed in the bin among them with the lowest load. The classical
setup is d = 1.

• The maximum load in with d-balanced allocations with d ≥ 2 is at most
O(log log n) with high probability.

Proof: Let h(t) be the height of ball t in its bin. Let νi(t) be the number of
bins with lead at least i after t throws, µi(t) the number of balls of height
at least i after t throws. We have νi(t) ≤ µi(t). We want to find βi such
that νi(n) ≤ βi with high probability and βj < 1 for some j = O(log log n).

Let Ei be the event νi(n) ≤ βi. Let Yi(t) be the following indicator variable:

Yi(t) = 1 ⇐⇒ h(t) ≥ i + 1 ∧ νi(t − 1) ≤ βi

Whatever the bin choices ω1, . . . ωt−1 in the first t − 1 throws, we have

P(Yi(t) = 1 | ω1, . . . , ωt−1) ≤ βd
i

nd

since for h(t) ≥ i + 1 to hold, all d samples need to be taken from the at
most βi suitable bins out of the n bins. To keep one power of n, we set
βi+1 = 2βd

i /nd−1 and initialize β4 = n/4. With this initialization, we have
P(E4) = 1.

By the law of total probability, we have P (
∑n

t=1 Yi(t) > k) ≤
P (

∑n
t=1 Zt > k) where the Zt are i.i.d. Bernoulli trials with success pa-

rameter pi = βd
i /nd. The event Ei implies

∑n
t=1 Yi(t) = µi+1(n) ≥ νi+1(n),

and thus

P(¬Ei+1 | Ei) ≤
P (

∑n
t=1 Zt > 2npi)
P(Ei)

≤ e−pin/3

P(Ei)
≤ 1

n2P(Ei)

3



by the Chernoff bound if pin ≥ 6 log n. This then implies P(¬Ei+1) ≤
P(¬Ei) + 1/n2, i.e., Ei holds with high probability.

The condition pin ≥ 6 log n restricts i to be O(log log n) since βi+4 ≤ n/2di

as long as it is true. Let i∗ be the smallest value that violates the condition.
It is βi∗ = O(log n). One can prove that P(νi∗+3(n) ≥ 1) = O(1/n) by
another Chernoff bound and the union bound.

But then, with high probability, there is no bin with load higher than
i∗ + 3 = O(log log n).

4


	PACS Part 2, Lecture 2
	Moment-Generating Functions
	Chernoff Bounds
	Balls into Bins
	Power of Two Choices


