
PACS Part 2, Lecture 1
Useful Equalities and Inequalities

• Union bound: P(
⋃∞

i=1 Ai) ≤
∑∞

i=1 P(Ai)

• Markov’s inequality: P(X ≥ z) ≤ EX/z if X and z are nonnegative

• 1 − x ≤ e−x

• Law of total probability: P(E) =
∑∞

i=1 P(E | Ai) · P(Ai) if (Ai)i≥1 is a
partition of Ω

• Linearity of expectation: E
∑n

i=1 Xi =
∑n

i=1 EXi

• EX =
∑∞

k=0 P(X > k) if X ∈ {0, 1, 2, . . . }

Coupon Collector: Expectation
We want to collect all of n different coupons. At every time step, we get an i.i.d.
coupon chosen uniformly at random from the set of all possible coupons. What
is the number X of time steps until we have every coupon at least once?

First answer: expectation. We can write X =
∑n

i=1 Xi where Xi is the number
of time steps needed to go from i − 1 unique collected coupons to i. By linearity
of expectation, it suffices to compute each EXi and sum them up.

Each Xi follows a geometric distribution with success probability pi = 1 − i−1
n =

n−i+1
n . The expectation is thus EXi = 1/pi = n

n−i+1 . Summing these, we get
EX = n

∑n
i=1

1
n−i+1 = n

∑n
i=1

1
i = nH(n), where H(n) is the nth harmonic

number.

Since H(n) = log n + O(1) as n → ∞, we get EX ∼ n log n.

Chebyshev’s Inequality

P(|X − EX| ≥ a) ≤ Var(X)
a2

Proof: use Markov on (X − EX)2

Coupon Collector: Variance
Since the Xi are independent, we have Var(X) =

∑n
i=1 Var(Xi). The variance

of the geometric random variable Xi is equal to Var(Xi) = (1 − pi)/p2
i ≤ 1/p2

i .
Thus:

Var(X) ≤
n∑

i=1

n2

(n − i + 1)2 ≤ n2
n∑

i=1

1
i2 ≤ n2 π2

6 = O(n2)
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We thus get P(|X − nH(n)| ≥ nH(n)) = O(1/ log2 n).

Quicksort
This is the quicksort algorithm to sort the list S of distinct elements from a
totally ordered universe.

1. If S has at most one element return S.
2. Choose a pivot element s ∈ S.
3. Compare each element of S to s and construct lists S1 and S2 with the

elements that are less than, resp. greater than, s.
4. Recursively sort S1 and S2.
5. Return S1, x, S2.

Making the choice in step 2 an independent uniformly random one, this is a
randomized algorithm.

Let x1, . . . , nn be the input values and y1, . . . , yn the same values in increasing
order. Let X be the number of comparisons, and let Xij be the indicator variable
whether yi and yj are every compared (for i < j).

We have EX =
∑n−1

i=1
∑n

j=i+1 EXij =
∑n−1

i=1
∑n

j=i+1
2

j−i+1 =
∑n

k=2
∑n+1−k

i=1
2
k =∑n

k=2(n + 1 − k) 2
k = (2n + 2)

∑n
k=1

1
k − 4n = 2n log n + O(n).

Randomized Median Algorithm
Assume a set of n distinct elements from a totally ordered universe. For simplicity,
we assume that n is odd.

1. Pick a multiset of ⌈n3/4⌉ elements in S, independently and uniformly at
random with replacement.

2. Sort the multiset R.
3. Let d be the ⌊ 1

2 n3/4 −
√

n⌋th smallest element of R.
4. Let u be the ⌈ 1

2 n3/4 +
√

n⌉th smallest element of R.
5. Compute C = {x ∈ S | d ≤ x ≤ u}, ℓd = |{x ∈ S | x < d}|, and

ℓu = |{x ∈ S | x > u}|.
6. If ℓd > n/2 or ℓu > n/2, then FAIL.
7. If |C| ≤ 4n3/4, then sort C, else FAIL.
8. Output the (⌊n/2⌋ − ℓd + 1)th smallest element of C.

Idea: sample d and u such that the median m is between d and u, then order
the set C of elements between d and u and find the index of the median in C
(after having counted the elements smaller than d).

Consider the three following error events:

• E1: Y1 = |{r ∈ R | r ≤ m}| < 1
2 n3/4 −

√
n

• E2: Y2 = |{r ∈ R | r ≥ m}| < 1
2 n3/4 −

√
n
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• E3: |C| > 4n3/4

The event E1 is equivalent to ℓd > n/2 and does not happen with high probability:
Denoting by Xi the indicator variable whether the ith sample for R is ≤ m, we
have that E1 is equivalent to Y1 =

∑n3/4

i=1 Xi < 1
2 n3/4 −

√
n. Since Y1 is a sum of

i.i.d. Bernoulli trials, we have:

Var(Y1) = n3/4
(

1
2 + 1

2n

) (
1
2 − 1

2n

)
≤ 1

4n3/4

Applying Chebyshev’s inequality then gives:

P(E1) ≤ Var(Y1)
n

≤ 1
4n−1/4

The event E2 is equivalent to ℓu > n/2 and satisfies the same probability bound.

The event E3 also does not happen with high probability: The event E3 implies
either the event E3,1: at least 2n3/4 elements of C are > m or the event E3,2 with
> m replaced by < m. The event E3,1 implies that the order of u in S is at least
1
2 n + 2n3/4, i.e., that R has at least 1

2 n3/4 −
√

n samples among the 1
2 n − 2n3/4

largest elements of S. Denoting by Xi the indicator variable whether the ith
sample for R is among the 1

2 n − 2n3/4 largest elements of S, we have

EX = E
n3/4∑
i=1

Xi = 1
2n3/4 − 2

√
n

and
Var(X) = n3/4

(
1
2 − 2n−1/4

) (
1
2 + 2n−1/4

)
Applying Chebyshev’s inequality and the union bound then gives:

P(E3) ≤ 2Var(X)
n

≤ 1
2n−1/4

By the union bound, the probability of the algorithm failing is at most n−1/4.

Las Vegas from Monte Carlo
As stated, the algorithm is a Monte Carlo algorithm, i.e., it doesn’t always give
the correct answer when it terminates. Since we can check the correctness of the
median in linear time, we can easily transform it into a Las Vegas algorithm,
i.e., an algorithm that always gives the correct answer, but whose running time
may be randomized.

The correctness of each iteration of the algorithm is an i.i.d. Bernoulli trial with
success probability p ≥ 1 − n−1/4. The expected running time is thus at most:

O(n) ·
∞∑

k=0
(1 − p)k = O(n) · 1

p
= O(n)

3


	PACS Part 2, Lecture 1
	Useful Equalities and Inequalities
	Coupon Collector: Expectation
	Chebyshev’s Inequality
	Coupon Collector: Variance
	Quicksort
	Randomized Median Algorithm
	Las Vegas from Monte Carlo


